Fuzzy interior ideals in ordered semigroups
Lobachevskii journal of mathematics, Tome 21 (2006), pp. 65-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In regular and in intra-regular ordered semigroups the ideals and the interior ideals coincide. In regular and in intra-regular $poe$-semigroups the ideal elements and the interior ideal elements coincide. In an attempt to show the similarity between the theory of ordered semigroups and the theory of fuzzy ordered semigroups, we prove here that in regular and in intra-regular ordered semigroups the fuzzy ideals and the fuzzy interior ideals coincide. We also prove that $A$ is an interior ideal of an ordered semigroup $S$ if and only if the characteristic function $f_A$ is a fuzzy interior ideal of $S$. We finally introduce the concept of a fuzzy simple ordered semigroup, we prove that an ordered semigroup is simple if and only if it is fuzzy simple, and we characterize the simple ordered semigroups in terms of fuzzy interior ideals.
Keywords: ordered semigroup, right ideal, ideal, regular, intra-regular ordered semigroup, $poe$-semigroup, right ideal element, ideal element of a $poe$-semigroup, fuzzy right ideal, fuzzy ideal, interior ideal, fuzzy interior ideal, fuzzy simple ordered semigroup.
Mots-clés : simple
@article{LJM_2006_21_a4,
     author = {N. Kehayopulu and M. Tsingelis},
     title = {Fuzzy interior ideals in ordered semigroups},
     journal = {Lobachevskii journal of mathematics},
     pages = {65--71},
     publisher = {mathdoc},
     volume = {21},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_21_a4/}
}
TY  - JOUR
AU  - N. Kehayopulu
AU  - M. Tsingelis
TI  - Fuzzy interior ideals in ordered semigroups
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 65
EP  - 71
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_21_a4/
LA  - en
ID  - LJM_2006_21_a4
ER  - 
%0 Journal Article
%A N. Kehayopulu
%A M. Tsingelis
%T Fuzzy interior ideals in ordered semigroups
%J Lobachevskii journal of mathematics
%D 2006
%P 65-71
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2006_21_a4/
%G en
%F LJM_2006_21_a4
N. Kehayopulu; M. Tsingelis. Fuzzy interior ideals in ordered semigroups. Lobachevskii journal of mathematics, Tome 21 (2006), pp. 65-71. http://geodesic.mathdoc.fr/item/LJM_2006_21_a4/

[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc., Coll. Publ., XXV, Providence, Rhode Island, 1967 | MR

[2] N. Kehayopulu, “Note on Green's relations in ordered semigroups”, Mathematica Japonica, 36:2 (1991), 211–214 | MR | Zbl

[3] N. Kehayopulu, “On regular duo ordered semigroups”, Mathematica Japonica, 37:3 (1992), 535–540 | MR | Zbl

[4] N. Kehayopulu, “On prime, weakly prime ideals in ordered semigroups”, Semigroup Forum, 44:3 (1992), 341–346 | DOI | MR | Zbl

[5] N. Kehayopulu, “On left regular and left duo $poe$-semigroups”, Semigroup Forum, 44:3 (1992), 306–313 | DOI | MR | Zbl

[6] N. Kehayopulu, “On intra-regular ordered semigroups”, Semigroup Forum, 46:3 (1993), 271–278 | DOI | MR | Zbl

[7] N. Kehayopulu, “Note on interior ideals, ideal elements in ordered semigroups”, Scientiae Mathematicae, 2:3 (1999), 407–409, (electronic) | MR | Zbl

[8] N. Kehayopulu and M. Tsingelis, “Fuzzy sets in ordered groupoids”, Semigroup Forum, 65:1 (2002), 128–132 | DOI | MR | Zbl

[9] N. Kuroki, “Fuzzy semiprime ideals in semigroups”, Fuzzy Sets and Systems, 8:1 (1982), 71–79 | DOI | MR | Zbl