On closed inverse images of base-paracompact spaces
Lobachevskii journal of mathematics, Tome 21 (2006), pp. 57-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that every base-paracompact mapping $f\colon X\longrightarrow Y$ inversely preserves base-paracompactness if $w(X)\ge w(Y)$, where $w(X)$ and $w(Y)$ denote the weight of $X$ and the weight of $Y$ respectively. As an application of this result, we prove that every closed Lindelöf mapping $f\colon X\longrightarrow Y$ inversely preserves base-paracompactness if $X$ is a regular space and $w(X)$ is a regular cardinality, where "$X$ is a regular space" cannot be relaxed to "$X$ is a Hausdorff space", which give some answers for a question on inverse images of base-paracompact spaces posed by L. Wu.
Keywords: base-paracompactness, base-paracompact mapping, closed Lindelöf mapping, weight, regular cardinality.
@article{LJM_2006_21_a3,
     author = {Y. Ge},
     title = {On closed inverse images of base-paracompact spaces},
     journal = {Lobachevskii journal of mathematics},
     pages = {57--63},
     publisher = {mathdoc},
     volume = {21},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_21_a3/}
}
TY  - JOUR
AU  - Y. Ge
TI  - On closed inverse images of base-paracompact spaces
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 57
EP  - 63
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_21_a3/
LA  - en
ID  - LJM_2006_21_a3
ER  - 
%0 Journal Article
%A Y. Ge
%T On closed inverse images of base-paracompact spaces
%J Lobachevskii journal of mathematics
%D 2006
%P 57-63
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2006_21_a3/
%G en
%F LJM_2006_21_a3
Y. Ge. On closed inverse images of base-paracompact spaces. Lobachevskii journal of mathematics, Tome 21 (2006), pp. 57-63. http://geodesic.mathdoc.fr/item/LJM_2006_21_a3/

[1] H. R. Bennett and D. J. Lutzer, “A note on weak $\theta$-refinability”, Gen. Top. Appl., 2 (1972), 49–54 | DOI | MR | Zbl

[2] D. K. Burke, “Covering properties”, Handbook of Set-Theoretic Topology, eds. K. Kunen and J. Vanghan, North-Holland Press, Amsterdam, 1984, 347–422 | MR

[3] R. Engelking, General Topology, revised ed., Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989 | MR | Zbl

[4] Y. Ge, “On closed inverse images of mesocompact spaces”, Fasciculi Mathematici, 36 (2005), 27–32 | MR

[5] K. Kunen, Set Theory. An introduction to independence proofs, North-Holland Press, Amsterdam, 1980 | MR

[6] E. A. Michael, “A note on paracompact spaces”, Proc. Amer. Math. Soc., 4 (1953), 831–838 | DOI | MR | Zbl

[7] J. E. Porter, “Base-paracompact spaces”, Top. Appl., 128 (2003), 145–156 | DOI | MR | Zbl

[8] Z. Qu and Y. Yasui, “Relatively subparacompact spaces”, Scientiae Mathematicae Japonicae, 54 (2001), 281–287 | MR | Zbl

[9] L. Wu, Surveys in inverse images of covering properties, International General Topology Symposium, Zhangzhou Teachers College, Zhangzhou, P. R. China, 2005