Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2006_21_a3, author = {Y. Ge}, title = {On closed inverse images of base-paracompact spaces}, journal = {Lobachevskii journal of mathematics}, pages = {57--63}, publisher = {mathdoc}, volume = {21}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2006_21_a3/} }
Y. Ge. On closed inverse images of base-paracompact spaces. Lobachevskii journal of mathematics, Tome 21 (2006), pp. 57-63. http://geodesic.mathdoc.fr/item/LJM_2006_21_a3/
[1] H. R. Bennett and D. J. Lutzer, “A note on weak $\theta$-refinability”, Gen. Top. Appl., 2 (1972), 49–54 | DOI | MR | Zbl
[2] D. K. Burke, “Covering properties”, Handbook of Set-Theoretic Topology, eds. K. Kunen and J. Vanghan, North-Holland Press, Amsterdam, 1984, 347–422 | MR
[3] R. Engelking, General Topology, revised ed., Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989 | MR | Zbl
[4] Y. Ge, “On closed inverse images of mesocompact spaces”, Fasciculi Mathematici, 36 (2005), 27–32 | MR
[5] K. Kunen, Set Theory. An introduction to independence proofs, North-Holland Press, Amsterdam, 1980 | MR
[6] E. A. Michael, “A note on paracompact spaces”, Proc. Amer. Math. Soc., 4 (1953), 831–838 | DOI | MR | Zbl
[7] J. E. Porter, “Base-paracompact spaces”, Top. Appl., 128 (2003), 145–156 | DOI | MR | Zbl
[8] Z. Qu and Y. Yasui, “Relatively subparacompact spaces”, Scientiae Mathematicae Japonicae, 54 (2001), 281–287 | MR | Zbl
[9] L. Wu, Surveys in inverse images of covering properties, International General Topology Symposium, Zhangzhou Teachers College, Zhangzhou, P. R. China, 2005