A note on the rate of complete convergence for maximus of partial sums for moving average processes in Rademacher type Banach spaces
Lobachevskii journal of mathematics, Tome 21 (2006), pp. 45-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the complete convergence rates for maximums of partial sums of Banach space valued random elements consisting of a moving average process. The corresponding almost sure convergence results for partial sums are derived, too.
Keywords: Banach space valued random elements, complete convergence, almost sure convergence, Rademacher type $p$ Banach space, moving average.
@article{LJM_2006_21_a2,
     author = {P. Chen and T.-Ch. Hu and A. I. Volodin},
     title = {A note on the rate of complete convergence for maximus of partial sums for moving average processes in {Rademacher} type {Banach} spaces},
     journal = {Lobachevskii journal of mathematics},
     pages = {45--55},
     publisher = {mathdoc},
     volume = {21},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_21_a2/}
}
TY  - JOUR
AU  - P. Chen
AU  - T.-Ch. Hu
AU  - A. I. Volodin
TI  - A note on the rate of complete convergence for maximus of partial sums for moving average processes in Rademacher type Banach spaces
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 45
EP  - 55
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_21_a2/
LA  - en
ID  - LJM_2006_21_a2
ER  - 
%0 Journal Article
%A P. Chen
%A T.-Ch. Hu
%A A. I. Volodin
%T A note on the rate of complete convergence for maximus of partial sums for moving average processes in Rademacher type Banach spaces
%J Lobachevskii journal of mathematics
%D 2006
%P 45-55
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2006_21_a2/
%G en
%F LJM_2006_21_a2
P. Chen; T.-Ch. Hu; A. I. Volodin. A note on the rate of complete convergence for maximus of partial sums for moving average processes in Rademacher type Banach spaces. Lobachevskii journal of mathematics, Tome 21 (2006), pp. 45-55. http://geodesic.mathdoc.fr/item/LJM_2006_21_a2/

[1] Ahmed, S. E., Giuliano Antonini, R., Volodin, A., “On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements with application to moving average processes”, Statist. Probab. Lett., 58 (2002), 185–194 | DOI | MR | Zbl

[2] Baum, L. E. and Katz, M., “Convergence rates in the law of large numbers”, Trans. Amer. Math. Soc., 120 (1965), 108–123 | DOI | MR | Zbl

[3] Chen, P., Sung, S. H., and Volodin, A., “The rate of complete convergence for arrays of Banach space valued random elements”, Siberian Advances in Mathematics, 16:3 (2006), 1–14 | MR

[4] Chow, Y. S., and Lai, T. L., “Limiting behavior of weighted sums of independent random variables”, Ann. Probab., 1 (1973), 810–824 | DOI | MR | Zbl

[5] Erdős, P., “On a theorem of Hsu and Robbins”, Ann. Math. Statist., 20 (1949), 286–291 | DOI | MR | Zbl

[6] Erdős, P., “Remark on my paper ‘On a theorem of Hsu and Robbins’”, Ann. Math. Statist., 21 (1950), 138 | DOI | MR | Zbl

[7] Hsu, P. L. and Robbins, H., “Complete convergence and the law of large numbers”, Proc. Nat. Acad. Sci. U.S.A., 33 (1947), 25–31 | DOI | MR | Zbl

[8] Ledoux, M., Talagrand, M., Probability in Banach Spaces, Spring-Verlag, Berlin Heidelberg, 1991 | MR | Zbl

[9] Li, D., Rao, M. B., Wang, X., “Complete convergence of moving average processes”, Statist. Probab. Lett., 14 (1992), 111–114 | DOI | MR | Zbl

[10] Shao, Q. M., “A moment inequality and its applications”, Acta Math. Sinica, 31 (1988), 736–747 | MR | Zbl