Solutions with subgroup symmetry for singular equations in bifurcation theory
Lobachevskii journal of mathematics, Tome 20 (2005), pp. 91-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, on the base of abstract theory (B. V. Loginov, 1979) the nonlinear eigenvalue problems for nonlinearly perturbed Helmholtz equations having application to low temperature plasma theory and to some problems of differential geometry are considered. Other possible often technically more difficult applications (for instance, periodical solutions in heat convection theory) are completely determined by the group symmetry of original equations and do not depend on their concrete essence. In the general case of finite group symmetry with known composition law, a computer program for determination of all subgroups is given, in particular, for dihedral and also planar and spatial crystallographic groups.
Keywords: critical phenomena, bifurcation problem, group symmetry, finite groups, subgroup invariant solutions, nonlinearly perturbed Helmholtz equation, computer program.
Mots-clés : applications
@article{LJM_2005_20_a6,
     author = {B. V. Loginov and O. V. Makeev},
     title = {Solutions with subgroup symmetry for singular equations in bifurcation theory},
     journal = {Lobachevskii journal of mathematics},
     pages = {91--101},
     publisher = {mathdoc},
     volume = {20},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_20_a6/}
}
TY  - JOUR
AU  - B. V. Loginov
AU  - O. V. Makeev
TI  - Solutions with subgroup symmetry for singular equations in bifurcation theory
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 91
EP  - 101
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_20_a6/
LA  - en
ID  - LJM_2005_20_a6
ER  - 
%0 Journal Article
%A B. V. Loginov
%A O. V. Makeev
%T Solutions with subgroup symmetry for singular equations in bifurcation theory
%J Lobachevskii journal of mathematics
%D 2005
%P 91-101
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_20_a6/
%G en
%F LJM_2005_20_a6
B. V. Loginov; O. V. Makeev. Solutions with subgroup symmetry for singular equations in bifurcation theory. Lobachevskii journal of mathematics, Tome 20 (2005), pp. 91-101. http://geodesic.mathdoc.fr/item/LJM_2005_20_a6/

[1] Bobenko A. D., “Eigenfunctions of Dirichlet and Neumann problems in a rectangle for elliptic sinus-Gordon equation”, Math. questions of waves propagation theory, Zapiski nauch. seminarov LOMI, 179, Nauka, Leningrad, 1989, 383–393

[2] Loginov B. V., “On invariant solutions in branching theory”, Doklady Akad. Nauk. SSSR, 246:5 (1979), 1048–1051 (Russian) | MR | Zbl

[3] Loginov B. V., Branching Theory of Solutions of Nonlinear Equations under Group Invariance Conditions, Fan, Acad. Sci. Uzbek SSR, Tashkent, 1985 | Zbl

[4] Loginov B. V., “Solution branching of nonlinear equations and group symmetry”, Vestnik of Samara University, 2:8 (1998), 15–75 (Russian) | MR

[5] Loginov B. V., Konopleva I. V., “Domain symmetry and periodical solutions problem for the nonlinearly perturbed Helmholtz equation”, Proc. of Middle-Volga Mathematical Society, 5 (2003), 38–83

[6] McDonald B. E., “Numerical Calculation of Nonunique Solutions of a Two Dimensional Sinh-Poisson Equation”, J. Comput. Ph., 16:4 (1974), 360–374 | DOI

[7] Montgomery D., Joyce G., “Statistical mechanics of “negative temperature” states in plasma”, Physics of Fluids, 17:6 (1974), 1139–1145 | DOI | MR

[8] Ovsyannikov L. V., Group Analysis of Differential Equations, Academic Press, New York, 1982 | MR | Zbl

[9] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapounov-Schmidt Methods in Nonlinar Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[10] Ter-Grigoryantz G. K., “Onset of two-periodical convection in a horizontal layer”, Appl. Math. Mech., 37:1 (1973), 177–184 (Russian) | MR

[11] Ter-Grigoryantz G. K., “On one case of stationary regimes branching for convection in a layer”, News of the North-Kavkaz sci. center higher school (natural sci.), 4 (1975), 39–43

[12] Vainberg M. M., Trenogin V. A., Branching Theory of Solutions of Nonlinear Equations, Wolters Noordorf, Leyden, 1974

[13] Vladimirov S. A., “Ordinary differential equations with discrete group symmetry”, Differentsialnye Uravnenya, 11:7 (1975), 1180–1189 (Russian) | MR | Zbl

[14] Wente H. C., “Counter example to a conjecture of H. Hopf”, Pacific. J. Math., 121:1 (1986), 183–244 | MR