Generalized solutions of Volterra integral equations of the first kind
Lobachevskii journal of mathematics, Tome 20 (2005), pp. 47-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we derived the explicit structure of generalized solutions of the Volterra integral equations of the first kind. The solution contains singular and regular components. These components can be constructed separately. On the first stage we construct the singular component of the solution by solving the special linear algebraic system. On the second stage the regular component of generalized solution can be constructed.
Keywords: Volterra integral equations, Dirac function, resolvent, singular component.
@article{LJM_2005_20_a3,
     author = {M. V. Falaleev and N. A. Sidorov and D. N. Sidorov},
     title = {Generalized solutions of {Volterra} integral equations of the first kind},
     journal = {Lobachevskii journal of mathematics},
     pages = {47--57},
     publisher = {mathdoc},
     volume = {20},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_20_a3/}
}
TY  - JOUR
AU  - M. V. Falaleev
AU  - N. A. Sidorov
AU  - D. N. Sidorov
TI  - Generalized solutions of Volterra integral equations of the first kind
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 47
EP  - 57
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_20_a3/
LA  - en
ID  - LJM_2005_20_a3
ER  - 
%0 Journal Article
%A M. V. Falaleev
%A N. A. Sidorov
%A D. N. Sidorov
%T Generalized solutions of Volterra integral equations of the first kind
%J Lobachevskii journal of mathematics
%D 2005
%P 47-57
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_20_a3/
%G en
%F LJM_2005_20_a3
M. V. Falaleev; N. A. Sidorov; D. N. Sidorov. Generalized solutions of Volterra integral equations of the first kind. Lobachevskii journal of mathematics, Tome 20 (2005), pp. 47-57. http://geodesic.mathdoc.fr/item/LJM_2005_20_a3/

[1] Apartsyn A. S., Nonclassical Linear Volterra Equations of the First Kind, VSP Brill Academic Publ., Zeist, 2003 | MR | Zbl

[2] Apartsin A. S., Sidorov D. N., Solodusha S. V., “Identification of Integral Models of Nonlinear Dynamic Systems”, Proc. International Conference on Dynamic System Identification and Inverse Problems (Moscow - St. Petersburg), Moscow Aviation Inst., Russia, 1998, 22–34

[3] Dolexal V., Dynamics of linear systems, Academia, Prague, 1967 | MR

[4] Sib. Math. J., 41, 2000 | MR | Zbl

[5] Mishkis A. D., “New proof of the generalized solution of the integral equation of the first kind of the general case”, Integral-Differential Equations Studies, Ilim Publ., Frunze, 1983 (Russian)

[6] Sidorov D. N., “Modelling of Non-linear Dynamic Systems by Volterra Series Approach Method: Identification and Applications”, Attractors, Signals, and Synergetics, ed. W. Klonowski, Pabst Science Publ., Berlin, 2002, 276–282

[7] Sidorov N. A., Falaleev M. V., “Generalized Solutions of the Volterra Integral Equations of the First Kind”, Proc. of XII Baikal International Conference Optimization Methods and its Applications, vol. 4, ISDCT Publ., Irkutsk, 2001, 173–177 (Russian)

[8] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publ., Dordrecht, 2002 | MR | Zbl

[9] Sidorov N. A., Sidorov D. N., “Solvabolity of the Volterra Integral Equations of the First Kind in the Space of Generalized Functions”, Journal of Optimization, Control and Intelligence, 5 (2000), 80–85 (Russian)

[10] Vladimirov V. S., Mathematical Physics Equations, Nauka Publ., Moscow, 1981 (Russian) | MR

[11] Zavalishchin S. T., Sesekin A. N., Dynamic impulse systems, Theory and applications, Kluwer Academic Publ., Dordrecht, 1997 | MR | Zbl