Continuous and generalized solutions of singular partial differential equations
Lobachevskii journal of mathematics, Tome 20 (2005), pp. 31-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses continuous and generalized solutions of equations with partial derivatives having the operator coefficients which operate in Banach spaces. The operator with the elder derivative with respect to time is Fredholm. We apply Lyapunov–Schmidt's ideas and the generalized Jordan sets techniques to reduce partial differential-operator equations with the Fredholm operator in the main part to regular problems. In addition this technique has been exploited to prove the theorem of existence and uniqueness for a singular initial-value problem, as well as to construct the left and right regularizators of singular operators in Banach spaces and to construct fundamental operators in the theory of generalized solutions of singular equations.
Keywords: singular PDE, generalized solutions, regularizators, fundamental operators.
@article{LJM_2005_20_a2,
     author = {M. V. Falaleev and N. A. Sidorov},
     title = {Continuous and generalized solutions of singular partial differential equations},
     journal = {Lobachevskii journal of mathematics},
     pages = {31--45},
     publisher = {mathdoc},
     volume = {20},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_20_a2/}
}
TY  - JOUR
AU  - M. V. Falaleev
AU  - N. A. Sidorov
TI  - Continuous and generalized solutions of singular partial differential equations
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 31
EP  - 45
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_20_a2/
LA  - en
ID  - LJM_2005_20_a2
ER  - 
%0 Journal Article
%A M. V. Falaleev
%A N. A. Sidorov
%T Continuous and generalized solutions of singular partial differential equations
%J Lobachevskii journal of mathematics
%D 2005
%P 31-45
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_20_a2/
%G en
%F LJM_2005_20_a2
M. V. Falaleev; N. A. Sidorov. Continuous and generalized solutions of singular partial differential equations. Lobachevskii journal of mathematics, Tome 20 (2005), pp. 31-45. http://geodesic.mathdoc.fr/item/LJM_2005_20_a2/

[1] Cassol R., Schowalter R., Singular and Degenerate Cauchy Problems, Academ Press, 1976

[2] Sib. Math. J., 41 (2000), 960–973 | DOI | MR | Zbl

[3] Goldstein J. A., Semigroups of Linear Operators and Applications, Oxford University Press, Inc., New York, 1985 | MR | Zbl

[4] Grazhdantseva E. Yu., “The fundamental operator function of an incomplete singular differential-difference operator in Banach spaces”, Journal of Optimization, Control and Intelligence, 7 (2003) (Russian)

[5] Kato T., Perturbation Theory of Linear Operators, Springer-Verlag, Berlin-Heidelberg-New-York, 1966 | MR

[6] Korpusov M. O., Pletnev Y. D., Sveshnikov A. G., “On quasi-steddy process in the conducting medium without dispersion”, Comput. Math. Math. Phys., 40:8 (2000), 1237–1249 (Russian) | MR | Zbl

[7] Krein S. G., Chernyshov N. I., Singularly disturbed differential equations in Banach spaces, Preprint, Institute of Mathematics, Siberian Branch, USSR Acad. Sci., 1979 (Russian)

[8] Petrovsky I., “Über das Causchy problem für system von partiellen Differentialgleichungen”, Mat. Sb., 2:5 (1937), 815–870

[9] Schwartz L., Theorie des distributions, I, II, Paris, 1950–1951

[10] Sidorov N. A., “The branching of the solutions of differential equations with a degeneracy”, Differential Equations, 9 (1973), 1464–1481 (Russian) | MR | Zbl

[11] Sidorov N. A., General regularization questions in problems of branching theory, Irkutsk Gos. Univ., Irkutsk, 1982 (Russian) | MR

[12] Sidorov N. A., “The initial-value problem for differential equations with the Fredholm operator in the main part”, Vestnik of Chelyabinsk State University, Ser. 3. Mathematics. Mechanics, 2 (1999), 103–112 (Russian) | MR

[13] Sidorov N. A., Blagodatskaya E. B., “Differential Equations with the Fredholm Operator in the Leading Differential Expression”, Soviet Math. Dokl., 44:1 (1992), 302–305 (Russian) | MR

[14] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl

[15] Sviridyuk G., Fedorov V., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Inverse and Ill-Posed Problems Series, VSP Academic Publ., The Netherlands, 2003 | MR | Zbl

[16] Trenogin V. A., “Branching of solutions of nonlinear equations in Banach spaces”, Uspekhi Mat. Nauk, 13:4 (1958), 197–203 (Russian) | MR | Zbl

[17] Vainberg M. M., Trenogin V. A., The Theory of Branching of Solutions of Nonlinear Equations, Wolters-Noordhoff, Groningen, 1974