Some random coincidence and random fixed point theorems for hybrid contractions
Lobachevskii journal of mathematics, Tome 18 (2005), pp. 139-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some new random coincidence point and random fixed point theorems for multifunctions in separable complete metrically convex metric spaces are proved. Our results are stochastic generalizations of classical coincidence and fixed point theorems.
Keywords: multifunction, random fixed point, random coincidence point.
@article{LJM_2005_18_a7,
     author = {G. Mustafa and N. A. Noshi and A. Rashid},
     title = {Some random coincidence and random fixed point theorems for hybrid contractions},
     journal = {Lobachevskii journal of mathematics},
     pages = {139--149},
     publisher = {mathdoc},
     volume = {18},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_18_a7/}
}
TY  - JOUR
AU  - G. Mustafa
AU  - N. A. Noshi
AU  - A. Rashid
TI  - Some random coincidence and random fixed point theorems for hybrid contractions
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 139
EP  - 149
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_18_a7/
LA  - en
ID  - LJM_2005_18_a7
ER  - 
%0 Journal Article
%A G. Mustafa
%A N. A. Noshi
%A A. Rashid
%T Some random coincidence and random fixed point theorems for hybrid contractions
%J Lobachevskii journal of mathematics
%D 2005
%P 139-149
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_18_a7/
%G en
%F LJM_2005_18_a7
G. Mustafa; N. A. Noshi; A. Rashid. Some random coincidence and random fixed point theorems for hybrid contractions. Lobachevskii journal of mathematics, Tome 18 (2005), pp. 139-149. http://geodesic.mathdoc.fr/item/LJM_2005_18_a7/

[1] Adrian Constantin, “A random fixed point theorem for multifunctions”, Stoch. Anal. Appl., 12:1 (1994), 65–73 | DOI | MR | Zbl

[2] A. Ahmad and M. Imdad, “Some common fixed point theorems for mappings and multi-valued mappings”, J. Math. Anal. Appl., 218 (1998), 546–560 | DOI | MR | Zbl

[3] C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl

[4] D. H. Wagner, “Survey of measurable selection theorems”, SIAM. J. Control Optim., 15 (1977), 859–903 | DOI | MR | Zbl

[5] G. Mustafa, “Random fixed point theorems for contractive type multifunctions”, J. Aust. Math. Soc., 78 (2005), 211–220 | DOI | MR | Zbl

[6] I. Beg and N. Shahzad, “Random fixed points of random multivalued operators on polish spaces”, Nonlinear Anal. Theor. Meth. Appl., 20:7 (1993), 835–847 | DOI | MR | Zbl

[7] K. Kuratowski and C. Ryll Nardzewski, “A general theorem on selectors”, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronon. Phys., 13 (1965), 397–403 | MR | Zbl

[8] N. S. Papageorgiou, “Random fixed point theorems for multifunctions”, Math. Japonica, 29 (1984), 93–106 | MR | Zbl

[9] S. Itoh, “A random fixed point theorem for a multivalued contraction mapping”, Pacific. J. Math., 68 (1977), 85–90 | MR | Zbl

[10] S. L. Singh and S. N. Mishra, “Coincidences and fixed points of nonself hybrid contractions”, J. Math. Anal. Appl., 256 (2001), 486–497 | DOI | MR | Zbl