On ordered left groups
Lobachevskii journal of mathematics, Tome 18 (2005), pp. 131-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

Our purpose is to give some similarities and some differences concerning the left groups between semigroups and ordered semigroups. Unlike in semigroups (without order) if an ordered semigroup is left simple and right cancellative, then it is not isomorphic to a direct product of a zero ordered semigroup and an ordered group, in general. Unlike in semigroups (without order) if an ordered semigroup $S$ is regular and has the property $aS\subseteq (Sa]$ for all $a\in S$, then the $\mathcal N$-classes of $S$ are not left simple and right cancellative, in general. The converse of the above two statements hold both in semigroups and in ordered semigroups. Exactly as in semigroups (without order), an ordered semigroup is a left group if and only if it is regular and right cancellative.
Keywords: left simple, right cancellative, regular ordered semigroup, left group, ideal, filter, left zero element, left zero ordered semigroup.
@article{LJM_2005_18_a6,
     author = {N. Kehayopulu and M. Tsingelis},
     title = {On ordered left groups},
     journal = {Lobachevskii journal of mathematics},
     pages = {131--137},
     publisher = {mathdoc},
     volume = {18},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_18_a6/}
}
TY  - JOUR
AU  - N. Kehayopulu
AU  - M. Tsingelis
TI  - On ordered left groups
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 131
EP  - 137
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_18_a6/
LA  - en
ID  - LJM_2005_18_a6
ER  - 
%0 Journal Article
%A N. Kehayopulu
%A M. Tsingelis
%T On ordered left groups
%J Lobachevskii journal of mathematics
%D 2005
%P 131-137
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_18_a6/
%G en
%F LJM_2005_18_a6
N. Kehayopulu; M. Tsingelis. On ordered left groups. Lobachevskii journal of mathematics, Tome 18 (2005), pp. 131-137. http://geodesic.mathdoc.fr/item/LJM_2005_18_a6/

[1] N. Kehayopulu, “On weakly commutative poe-semigroups”, Semigroup Forum, 34 (1987), 367–370 | DOI | MR | Zbl

[2] N. Kehayopulu, “On weakly prime ideals of ordered semigroups”, Mathematica Japonica, 35:6 (1990), 1051–1056 | MR | Zbl

[3] N. Kehayopulu, “Remark on ordered semigroups”, Mathematica Japonica, 35:6 (1990), 1061–1063 | MR | Zbl

[4] N. Kehayopulu, “Note on Green's relations in ordered semigroups”, Mathematica Japonica, 36:2 (1991), 211–214 | MR | Zbl

[5] N. Kehayopulu, “On regular duo ordered semigroups”, Mathematica Japonica, 37:3 (1992), 535–540 | MR | Zbl

[6] N. Kehayopulu and M. Tsingelis, “On the decomposition of prime ideals of ordered semigroups into their $\mathcal N$-classes”, Semigroup Forum, 47 (1993), 393–395 | DOI | MR | Zbl

[7] N. Kehayopulu, S. Lajos, M. Tsingelis, “A note on filters in ordered semigroups”, Pure Math. Appl., 8:1 (1997), 83–93 | MR | Zbl

[8] N. Kehayopulu and M. Tsingelis, “The embedding of some ordered semigroups into ordered groups”, Semigroup Forum, 60:3 (2000), 344–350 | DOI | MR | Zbl

[9] M. Petrich, Introduction to Semigroups, Charles E. Merrill Publ. Comp., A Bell and Howell Comp., Columbus, Ohio, 1973 | MR | Zbl