On the abstract theorem of Picard
Lobachevskii journal of mathematics, Tome 18 (2005), pp. 127-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a complex Banach algebra with unit. It was shown by Williams [1] that elements $\mathbf a,\mathbf b\in A$ commute if and only if $\sup\limits_{\lambda\in\mathbf C}\|\exp(\lambda\mathbf b)\mathbf a\exp(-\lambda\mathbf b)\|\infty$. This result allows us to obtain an analog of the von Neumann–Fuglede–Putnam theorem in case of normal elements in a complex Banach algebra. In the present paper the results by Williams [1] and Khasbardar et Thakare [2] are refined by using [3, 4, 5]. An abstract version of Picard theorem is obtained in this context.
@article{LJM_2005_18_a5,
     author = {M. I. Karahanyan},
     title = {On the abstract theorem of {Picard}},
     journal = {Lobachevskii journal of mathematics},
     pages = {127--130},
     publisher = {mathdoc},
     volume = {18},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_18_a5/}
}
TY  - JOUR
AU  - M. I. Karahanyan
TI  - On the abstract theorem of Picard
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 127
EP  - 130
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_18_a5/
LA  - en
ID  - LJM_2005_18_a5
ER  - 
%0 Journal Article
%A M. I. Karahanyan
%T On the abstract theorem of Picard
%J Lobachevskii journal of mathematics
%D 2005
%P 127-130
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_18_a5/
%G en
%F LJM_2005_18_a5
M. I. Karahanyan. On the abstract theorem of Picard. Lobachevskii journal of mathematics, Tome 18 (2005), pp. 127-130. http://geodesic.mathdoc.fr/item/LJM_2005_18_a5/

[1] J. P. Williams, “On commutativity and numerical range in Banach algebras”, J. Functional Analysis, 10 (1972), 326–329 | DOI | MR | Zbl

[2] S. K. Khasbardar, N. K. Thakare, “Commutativity in a Banach Algebra”, Bolletino U.M.I. (5), 15-A (1978), 581–584 | MR | Zbl

[3] E. A. Gorin, M. I. Karahanyan, “Asymptotic variant of Fuglede-Putnam theorem on commutators for Banach algebra elements”, Math. Zametki, 22:2 (1977), 179–188 (Russian) | MR | Zbl

[4] M. I. Karahanyan, “Asymptotic properties of commutators of Banach algebras elements”, Izv. Akad. Nauk Armenii, Matematika, 19:6 (1978), 405–421

[5] M. I. Karahanyan, “Asymptotic properties of commutators”, Izv. Akad. Nauk Armenii, Matematika, 29:1 (1994), 43–49 | MR

[6] J. F. Bonsall and J. Dunkan, Complete Normed Algebras, Springer-Verlag, 1973 | MR | Zbl

[7] E. A. Gorin, “Estimation of a partial involution in a Banach algebra”, Russian Journal of Mathematical Physics, 5:1 (1997), 117–118 | MR | Zbl

[8] P. R. Halmosh, A Hilbert Space Problem Book, Princeton, New-Jersey, 1967 | MR

[9] I. M. Karahanyan, M. I. Karahanyan, “On the commutativity in Banach algebra”, Izv. Akad. Nauk Armenii, Matematika, 34:4 (1999), 76–81 | MR | Zbl