Universal semigroups
Lobachevskii journal of mathematics, Tome 18 (2005), pp. 107-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce the notion of a universal semigroup and its dual, the universal cosemigroup. We show that the class of universal semigroups include the class of monoids and is included in the class of semigroups with a product that is an epimorphism. Both inclusions are proper. Semigroups in the category of Banach spaces are Banach algebras and we show that all Banach algebras with an approximate unit are universal and construct a finite dimensional Banach algebra that has no unit but is universal. The property of being universal is thus a generalized unit property.
@article{LJM_2005_18_a4,
     author = {P. K. Jakobsen and V. V. Lychagin},
     title = {Universal semigroups},
     journal = {Lobachevskii journal of mathematics},
     pages = {107--125},
     publisher = {mathdoc},
     volume = {18},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_18_a4/}
}
TY  - JOUR
AU  - P. K. Jakobsen
AU  - V. V. Lychagin
TI  - Universal semigroups
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 107
EP  - 125
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_18_a4/
LA  - en
ID  - LJM_2005_18_a4
ER  - 
%0 Journal Article
%A P. K. Jakobsen
%A V. V. Lychagin
%T Universal semigroups
%J Lobachevskii journal of mathematics
%D 2005
%P 107-125
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_18_a4/
%G en
%F LJM_2005_18_a4
P. K. Jakobsen; V. V. Lychagin. Universal semigroups. Lobachevskii journal of mathematics, Tome 18 (2005), pp. 107-125. http://geodesic.mathdoc.fr/item/LJM_2005_18_a4/

[1] S. MacLane, Categories for the Working Mathematician, Springer, 1991 | MR

[2] R. V. Kadison, Fundamentals of The Theory of Operator Algebras, Volume 1, Academic Press, 1983 | Zbl

[3] C. E. Richart, Van Nostrand, Banach Algebras, 1960

[4] G. Köthe, Topological Vector Spaces, II, Springer, 1979 | MR | Zbl

[5] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoires American Mathematical Society, 16, 1955 | MR

[6] Hilja Lisa Huru, Quantization and associativity constraints of the category of graded modules, Cand. Scient. Thesis in Mathematics, University of Tromso, 2002