On the higher order geometry of Weil bundles over smooth manifolds and over parameter-dependent manifolds
Lobachevskii journal of mathematics, Tome 18 (2005), pp. 53-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Weil bundle $T^{\mathbb A}M_n$ of an $n$-dimensional smooth manifold $M_n$ determined by a local algebra $\mathbb A$ in the sense of A. Weil carries a natural structure of an $n$-dimensional $\mathbb A$-smooth manifold. This allows ones to associate with $T^{\mathbb A}M_n$ the series $B^r(\mathbb A)T^{\mathbb A}M_n$, $r=1,\dots,\infty$, of $\mathbb A$-smooth $r$-frame bundles. As a set, $B^r(\mathbb A)T^{\mathbb A}M_n$ consists of $r$-jets of $\mathbb A$-smooth germs of diffeomorphisms $(\mathbb A^n,0)\to T^{\mathbb A}M_n$. We study the structure of $\mathbb A$-smooth $r$-frame bundles. In particular, we introduce the structure form of $B^r(\mathbb A)T^{\mathbb A}M_n$ and study its properties. Next we consider some categories of $m$-parameter-dependent manifolds whose objects are trivial bundles $M_n\times\mathbb R^m\to\mathbb R^m$, define (generalized) Weil bundles and higher order frame bundles of $m$-parameter-dependent manifolds and study the structure of these bundles. We also show that product preserving bundle functors on the introduced categories of $m$-parameter-dependent manifolds are equivalent to generalized Weil functors.
Keywords: Weil bundle, product preserving bundle functor, higher order connection.
@article{LJM_2005_18_a3,
     author = {G. N. Bushueva and V. V. Shurygin},
     title = {On the higher order geometry of {Weil} bundles over smooth manifolds and over parameter-dependent manifolds},
     journal = {Lobachevskii journal of mathematics},
     pages = {53--105},
     publisher = {mathdoc},
     volume = {18},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_18_a3/}
}
TY  - JOUR
AU  - G. N. Bushueva
AU  - V. V. Shurygin
TI  - On the higher order geometry of Weil bundles over smooth manifolds and over parameter-dependent manifolds
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 53
EP  - 105
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_18_a3/
LA  - en
ID  - LJM_2005_18_a3
ER  - 
%0 Journal Article
%A G. N. Bushueva
%A V. V. Shurygin
%T On the higher order geometry of Weil bundles over smooth manifolds and over parameter-dependent manifolds
%J Lobachevskii journal of mathematics
%D 2005
%P 53-105
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_18_a3/
%G en
%F LJM_2005_18_a3
G. N. Bushueva; V. V. Shurygin. On the higher order geometry of Weil bundles over smooth manifolds and over parameter-dependent manifolds. Lobachevskii journal of mathematics, Tome 18 (2005), pp. 53-105. http://geodesic.mathdoc.fr/item/LJM_2005_18_a3/

[1] Bernstein I. N. and Rozenfeld B. I., “Homogeneous spaces of infinite dimensional Lie algebras and characteristic classes of foliations”, Uspekhi mat. nauk, 28:4 (172) (1973), 103–138 | MR | Zbl

[2] Bushueva G. N., “Weil bundles over parameter-dependent manifolds”, Motions in Generalized Spaces (Penza, 2002), 24–34

[3] Bushueva G. N., “Weil functors and product preserving functors on the category of parameter-dependent manifolds”, Russian Mathematics (Izv. vuz), 2005, no. 5, 14–21 | MR | Zbl

[4] Doupovec M. and Kolář I., “Natural affinors on time-dependent Weil bundles”, Arch. Math., 27 (1991), 205–209 | MR

[5] Eck D. J., “Product-preserving functors on smooth manifolds”, J. Pure Appl. Algebra, 42 (1986), 133–140 | DOI | MR

[6] Ehresmann C., “Les prolongements d'une variété différentiable. I. Calcul des jets, prolongement principal”, C. R. Acad. Sci., 233:11 (1951), 598–600 | MR | Zbl

[7] Fuks D. B., Cohomology of Infinite-dimensional Lie Algebras, Moscow, Nauka, 1984 | MR | Zbl

[8] Gancarzewicz J., Rahmani N., and Salgado M., “Connections of higher order and product preserving functors”, Czech. Math. J., 52 (2002), 889–896 | DOI | MR | Zbl

[9] Guillemin V. and Sternberg S., Deformation theory of pseudogroup structures, Memoirs of Amer. Math. Soc., 64, 1966 | MR

[10] Kainz G. and Michor P., “Natural transformations in differential geometry”, Czech. Math. J., 37 (1987), 584–607 | MR | Zbl

[11] Kobayashi S. and Nomizu K., Foundations of Differential Geometry, Vol. 1, Interscience Publishers, 1963 | MR | Zbl

[12] Kolář I., “Affine structures on Weil bundles”, Nagoya Math. J., 158 (2000), 99–106 | MR | Zbl

[13] Kolář I., “On the geometry of fiber product preserving bundle functors”, Differential Geometry and its Applications, Proc. Conf. (Opava (Czech Republic), August 27–31, 2001), Silesian University, Opava, 2001, 85–92 | MR | Zbl

[14] Kolář I., Michor P. W., and Slovák J., Natural Operations in Differential Geometry, Springer, 1993 | MR

[15] Kolář I. and Mikulski W. M., “On the fiber product preserving bundle functors”, Differ. Geom. and Appl., 11 (1999), 105–115 | DOI | MR | Zbl

[16] Kriegl A. and Michor P. W., “Product preserving functors of infinite dimensional manifolds”, Archiv. Math., 32 (1996), 289–306 | MR | Zbl

[17] Lang S., Algebra, Mir, Moscow, 1968 (Russian) | Zbl

[18] Laptev G. F., “Basic higher order infinitesimal structures on a smooth manifold”, Proc. of Geometr. Seminar, vol. 1, VINITI AN USSR, Moscow, 1966, 139–190 | MR

[19] Luciano O. O., “Categories of multiplicative functors and Weil's infinitely near points”, Nagoya Math. J., 109 (1988), 67–108 | MR

[20] Mikulski W. M., “Product preserving bundle functors on fibered manifolds”, Archiv. Math., 32 (1996), 307–316 | MR | Zbl

[21] Molino P., Théorie des $G$-structure: le problème d'equivalence, Lecture Notes in Math., 588, Springer, 1977 | MR | Zbl

[22] Molino P., Riemannian Foliations, Birkhäuser, 1988 | MR | Zbl

[23] Morimoto A., “Prolongation of connections to bundles of infinitely near points”, J. Different. Geom., 11:4 (1976), 479–498 | MR | Zbl

[24] Muñoz J., Rodriguez J., and Muriel F. J., “Weil bundles and jet spaces”, Czech. Math. J., 550:4 (2000), 721–748 | DOI | MR

[25] Okassa E., “Prolongements des champs de vecteur à des variétés de points proches”, C. R. Acad. Sci. Sér. 1, 300:6 (1985), 173–176 | MR | Zbl

[26] Patterson L.-N., “Connexions and prolongations”, Canad. J. Math., 27:4 (1975), 766–791 | MR | Zbl

[27] Reinhart B. L., Differential Geometry of Foliations. The Fundamental Integrability Problem, Springer, 1983 | MR | Zbl

[28] Scheffers G., “Verallgemeinerung der Grundlagen der gewöhnlichen komplexen Funktionen”, Berichte Sächs. Akad. Wiss., 45 (1893), 828–842

[29] Shirokov A. P., “A note on structures in tangent bundles”, Proc. of Geometr. Seminar, vol. 5, VINITI AN USSR, Moscow, 1974, 311–318 | MR

[30] Shirokov A. P., “The geometry of tangent bundles and spaces over algebras”, Problems of geometry, vol. 12, VINITI, Moscow, 1981, 61–95 | MR

[31] Shurygin V. V., Russian Mathematics (Izv. vuz), 12 (1989), 78–80 | MR

[32] Shurygin V. V., “Manifolds over algebras and their application in the geometry of jet bundles”, Russian Math. Surveys (Uspekhi mat. nauk), 48:2 (290) (1993), 75–106 | DOI | MR | Zbl

[33] Shurygin V. V., “The structure of smooth mappings over Weil algebras and the category of manifolds over algebras”, Lobachevskii J. of Math., 5 (1999), 29–55 | MR | Zbl

[34] Shurygin V. V., “Smooth manifolds over local algebras and Weil bundles”, J. of Math. Sci., 108:2 (2002), 249–294 | DOI | MR | Zbl

[35] Sultanov A. Ya., “Prolongations of tensor fields and connections to Weil bundles”, Russian Mathematics (Izv. vuz), 1999, no. 9, 81–90 | MR

[36] Vasiliev A. M., “Semivector fields in fiber bundles”, Problems of Geometry, vol. 7, VINITI, Moscow, 1975, 23–26 | MR

[37] Vishnevskii V. V., “Manifolds over plural numbers and semitangent structures”, Problems of Geometry, vol. 20, VINITI, Moscow, 1988, 35–75 | MR

[38] Vishnevskii V. V., “Integrable affinor structures and their plural interpretations”, J. of Math. Sci., 108:2 (2002), 151–187 | DOI | MR

[39] Wagner V. V., “Algebraic theory of tangent spaces of higher orders”, Trudy semin. po vect. i tenz. analiz., 10, Moscow University, 1956, 31–88 | MR

[40] Weil A., “Théorie des points proches sur les variététes différentiables”, Colloque internat. centre nat. rech. sci., 52, Strasbourg, 1953, 111–117 | MR | Zbl

[41] Yevtushik L. E., “Differential connections and infinitesimal transformations of the prolonged pseudogroup”, Proc. of Geometr. Seminar, vol. 2, VINITI AN USSR, Moscow, 1969, 119–150 | MR

[42] Yevtushik L. E., Lumiste Ü. G., Ostianu N. M., and Shirokov A. P., “Differential-geometric structures on manifolds”, Problems of Geometry, vol. 9, VINITI, Moscow, 1979, 5–246 | MR

[43] Yuen P. C., “Prolongements de $G$-structures aux espaces de prolongement”, C. r. Acad. sci., 270:3 (1970), A538–A540

[44] Yuen P. C., “Sur la notion d'une $G$-structure géométrique et les $A$-prolongements de $G$-structures”, C. R. Acad. Sci., 270:24 (1970), A1589–A1592