On regularity of stationary solutions to the Navier–Stokes equation in 3-D torus
Lobachevskii journal of mathematics, Tome 17 (2005), pp. 259-263
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the Navier–Stokes equation in 3-D torus in the stationary setup and prove that any weak solution of this problem is actually smooth provided the stationary external force is also smooth.
Keywords:
Navier–Stokes equation, nonlinear elliptic equations.
@article{LJM_2005_17_a9,
author = {O. \`E. Zubelevich},
title = {On regularity of stationary solutions to the {Navier{\textendash}Stokes} equation in {3-D} torus},
journal = {Lobachevskii journal of mathematics},
pages = {259--263},
year = {2005},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_2005_17_a9/}
}
O. È. Zubelevich. On regularity of stationary solutions to the Navier–Stokes equation in 3-D torus. Lobachevskii journal of mathematics, Tome 17 (2005), pp. 259-263. http://geodesic.mathdoc.fr/item/LJM_2005_17_a9/
[1] E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231 | MR | Zbl
[2] J. Leray, “Essai sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl
[3] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod Gauthier-Villars, Paris, 1969 | MR | Zbl
[4] M. E. Taylor, Partial Differential Equations, vol. 3, Springer, New York, 1996 | MR
[5] K. Yosida, Functional analysis, Springer-Verlag, Berlin, 1965