On regularity of stationary solutions to the Navier--Stokes equation in 3-D torus
Lobachevskii journal of mathematics, Tome 17 (2005), pp. 259-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Navier–Stokes equation in 3-D torus in the stationary setup and prove that any weak solution of this problem is actually smooth provided the stationary external force is also smooth.
Keywords: Navier–Stokes equation, nonlinear elliptic equations.
@article{LJM_2005_17_a9,
     author = {O. \`E. Zubelevich},
     title = {On regularity of stationary solutions to the {Navier--Stokes} equation in {3-D} torus},
     journal = {Lobachevskii journal of mathematics},
     pages = {259--263},
     publisher = {mathdoc},
     volume = {17},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_17_a9/}
}
TY  - JOUR
AU  - O. È. Zubelevich
TI  - On regularity of stationary solutions to the Navier--Stokes equation in 3-D torus
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 259
EP  - 263
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_17_a9/
LA  - en
ID  - LJM_2005_17_a9
ER  - 
%0 Journal Article
%A O. È. Zubelevich
%T On regularity of stationary solutions to the Navier--Stokes equation in 3-D torus
%J Lobachevskii journal of mathematics
%D 2005
%P 259-263
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_17_a9/
%G en
%F LJM_2005_17_a9
O. È. Zubelevich. On regularity of stationary solutions to the Navier--Stokes equation in 3-D torus. Lobachevskii journal of mathematics, Tome 17 (2005), pp. 259-263. http://geodesic.mathdoc.fr/item/LJM_2005_17_a9/

[1] E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231 | MR | Zbl

[2] J. Leray, “Essai sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl

[3] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod Gauthier-Villars, Paris, 1969 | MR | Zbl

[4] M. E. Taylor, Partial Differential Equations, vol. 3, Springer, New York, 1996 | MR

[5] K. Yosida, Functional analysis, Springer-Verlag, Berlin, 1965