Dynamics of finite-multivalued transformations
Lobachevskii journal of mathematics, Tome 17 (2005), pp. 47-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a transformation of a normalized measure space such that the image of any point is a finite set. We call such a transformation an $m$-transformation. In this case the orbit of any point looks like a tree. In the study of $m$-transformations we are interested in the properties of the trees. An $m$-transformation generates a stochastic kernel and a new measure. Using these objects, we introduce analogies of some main concept of ergodic theory: ergodicity, Koopman and Frobenius–Perron operators etc. We prove ergodic theorems and consider examples. We also indicate possible applications to fractal geometry and give a generalization of our construction.
Keywords: ergodic theory, dynamic system, self-similar set.
@article{LJM_2005_17_a4,
     author = {K. B. Igudesman},
     title = {Dynamics of finite-multivalued transformations},
     journal = {Lobachevskii journal of mathematics},
     pages = {47--60},
     publisher = {mathdoc},
     volume = {17},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_17_a4/}
}
TY  - JOUR
AU  - K. B. Igudesman
TI  - Dynamics of finite-multivalued transformations
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 47
EP  - 60
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_17_a4/
LA  - en
ID  - LJM_2005_17_a4
ER  - 
%0 Journal Article
%A K. B. Igudesman
%T Dynamics of finite-multivalued transformations
%J Lobachevskii journal of mathematics
%D 2005
%P 47-60
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_17_a4/
%G en
%F LJM_2005_17_a4
K. B. Igudesman. Dynamics of finite-multivalued transformations. Lobachevskii journal of mathematics, Tome 17 (2005), pp. 47-60. http://geodesic.mathdoc.fr/item/LJM_2005_17_a4/

[1] Boyarsky, A. and Gora, P., Laws of Chaos. Invariant Measures and Dynamical Systems in one Dimension, Birkhäuser, Boston, 1997 | MR | Zbl

[2] Broomhead, D., Montaldi, J. and Sidorov, N., “Golden gaskets: variations on the Sierpinski sieve”, Nonlinearity, 17 (2004), 1455–1480 | DOI | MR | Zbl

[3] Falconer, K. J., Fractal Geometry, Wiley, 1990 | MR | Zbl

[4] Foguel, S., Selected Topics in the Study of Markov Operators, Carolina Lecture Series, Department of Mathematics, University of North Carolina, 1980 | MR | Zbl

[5] Krengel, V., Ergodic Theorems, Walter de Gruyter, N. York, 1985 | MR | Zbl

[6] Lasota, A. and Mackey, M., Chaos, Fractals, and Noise, Appl. Math. Sci., 97, Springer-Verlag, New York, 1994 | MR | Zbl

[7] Ngai, S. M. and Wang, Y., “Hausdorff dimension of self-similar sets with overlaps”, J. Lond. Math. Soc., 63 (2001), 655–672 | DOI | MR | Zbl

[8] Peres, Y. and Solomyak, B., “Self-similar measures and intersections of Cantor sets”, Trans. Amer. Math. Soc., 350 (1998), 4065–4087 | DOI | MR | Zbl