The Pseudospectral method for thermotropic primitive equation and
Lobachevskii journal of mathematics, Tome 16 (2004), pp. 79-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a pseudospectral method is proposed for solving the periodic problem of thermotropic primitive equation. The strict error estimation is proved.
Keywords: Thermotropic primitive equation, pseudospectral scheme
Mots-clés : error estimation.
@article{LJM_2004_16_a4,
     author = {A. Rashid},
     title = {The {Pseudospectral} method for thermotropic primitive equation and},
     journal = {Lobachevskii journal of mathematics},
     pages = {79--89},
     publisher = {mathdoc},
     volume = {16},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2004_16_a4/}
}
TY  - JOUR
AU  - A. Rashid
TI  - The Pseudospectral method for thermotropic primitive equation and
JO  - Lobachevskii journal of mathematics
PY  - 2004
SP  - 79
EP  - 89
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2004_16_a4/
LA  - en
ID  - LJM_2004_16_a4
ER  - 
%0 Journal Article
%A A. Rashid
%T The Pseudospectral method for thermotropic primitive equation and
%J Lobachevskii journal of mathematics
%D 2004
%P 79-89
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2004_16_a4/
%G en
%F LJM_2004_16_a4
A. Rashid. The Pseudospectral method for thermotropic primitive equation and. Lobachevskii journal of mathematics, Tome 16 (2004), pp. 79-89. http://geodesic.mathdoc.fr/item/LJM_2004_16_a4/

[1] B. Y. Guo, Difference Methods for Partial Equations, Science Press, Beijing, 1988

[2] R. Peyret, Spectral Methods in Incompressible Viscous Flow, Springer-Verlag, New York, 2002 | MR | Zbl

[3] B. Fornberg, A practical Guide to Pseudospectral Methods, Cambridge University press, Cambridge, 1996 | MR | Zbl

[4] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Second Edition (Revised), Dover Publication Inc. Mineola, New York, 2001 | MR | Zbl

[5] C. Canuto., M. Y. Hussaini., A. Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988 | MR

[6] H. Wengle and J. H. Seifeld, “Pseudospectral solution of atmospheric diffusion problems”, J. Comput. Phys., 26 (1978), 87–106 | DOI | MR | Zbl

[7] A. Robert., T. L. Yee and H. Ritchic, “A semi Lagrangian and semi implicit numerical integration scheme for multilevel atmospheric models”, Monthly Weather Review, 113 (1985), 338–394 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[8] B. Y. Guo, and J. D. Zheng, “Pseudospectral Difference Method for Baroclinic Primitive Equation and its Error Estimation”, Scince in China (Series A), 35 (1992), 1–13 | MR | Zbl

[9] B. Y. Guo, “Difference method for fluid dynamics numerical solution of Primitive equation”, Scientia Sinica, 24 (1981), 297–312 | MR | Zbl

[10] A. Rashid and Li. Yuan, “Convergence Analysis of Pseudospectral Method with Restraint operator for Fluid Flow with Low Mach Number”, Appl. Comput. Math., 2 (2003), 135–142 | MR

[11] H. Vendeven, “Family of spectral filters for discontinous problems”, J. Sci. Comput., 6 (1991), 159–192 | DOI | MR