On a problem of Avhadiev
Lobachevskii journal of mathematics, Tome 16 (2004), pp. 57-69
In this paper we consider a lower estimate for the ratio $I(\Omega)$ of the conformal moment of a simple connected domain $\Omega$ in the complex plane to the moment of inertia of this domain about its boundary. Related functionals depending on a simple connected domain $\Omega$ and two points $\omega_1,\omega_2\in\Omega$ with fixed hyperbolical distance between them are estimated. As a consequence a nontrivial lower estimate for $I(\Omega)$ is obtained.
Keywords:
moment of inertia of domain about its boundary, univalent functions.
Mots-clés : conformal moment of domain
Mots-clés : conformal moment of domain
@article{LJM_2004_16_a2,
author = {A. A. Kuznetsov},
title = {On a~problem of {Avhadiev}},
journal = {Lobachevskii journal of mathematics},
pages = {57--69},
year = {2004},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_2004_16_a2/}
}
A. A. Kuznetsov. On a problem of Avhadiev. Lobachevskii journal of mathematics, Tome 16 (2004), pp. 57-69. http://geodesic.mathdoc.fr/item/LJM_2004_16_a2/
[1] Avhadiev F. G., “Solution of generalized St Venant problem”, Matem. Sborn., 189:12 (1998), 3–12 (in Russian)
[2] Saint-Venant B., Memoir about torsion of prisms, GIFML, M., 1961 (in Russian)
[3] Timoshenko S. P., History of science of strength of materials, GITTL, M., 1957 (in Russian)
[4] Goluzin G. M., Geometric theory of functions of a complex variable, Nauka, M., 1966 (in Russian) | MR
[5] Nevanlinna R., Uniformization, Springer-Verlag, 1967 | MR
[6] Duren P. L., Univalent functions, Springer-Verlag, 1983 | MR | Zbl