A~note on the rate of complete convergence for weighted sums of arrays of Banach space valued random elements
Lobachevskii journal of mathematics, Tome 15 (2004), pp. 21-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain complete convergence results for arrays of rowwise independent Banach space valued random elements. In the main result no assumptions are made concerning the geometry of the underlying Banach space. As corollaries we obtain results on complete convergence in stable type $p$ Banach spaces.
Keywords: array of Banach space valued random elements, stable type $p$ Banach space, rowwise independence, weighted sums, complete convergence, rate of convergence, almost sure convergence, convergence in probability.
@article{LJM_2004_15_a2,
     author = {A. I. Volodin and R. Antonini and T.-Ch. Hu},
     title = {A~note on the rate of complete convergence for weighted sums of arrays of {Banach} space valued random elements},
     journal = {Lobachevskii journal of mathematics},
     pages = {21--33},
     publisher = {mathdoc},
     volume = {15},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2004_15_a2/}
}
TY  - JOUR
AU  - A. I. Volodin
AU  - R. Antonini
AU  - T.-Ch. Hu
TI  - A~note on the rate of complete convergence for weighted sums of arrays of Banach space valued random elements
JO  - Lobachevskii journal of mathematics
PY  - 2004
SP  - 21
EP  - 33
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2004_15_a2/
LA  - en
ID  - LJM_2004_15_a2
ER  - 
%0 Journal Article
%A A. I. Volodin
%A R. Antonini
%A T.-Ch. Hu
%T A~note on the rate of complete convergence for weighted sums of arrays of Banach space valued random elements
%J Lobachevskii journal of mathematics
%D 2004
%P 21-33
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2004_15_a2/
%G en
%F LJM_2004_15_a2
A. I. Volodin; R. Antonini; T.-Ch. Hu. A~note on the rate of complete convergence for weighted sums of arrays of Banach space valued random elements. Lobachevskii journal of mathematics, Tome 15 (2004), pp. 21-33. http://geodesic.mathdoc.fr/item/LJM_2004_15_a2/

[1] Adler, A., Ordóñez Cabrera, M., Rosalsky, A., and Volodin, A., “Degenerate weak convergence of row sums for arrays of random elements in stable type $p$ Banach spaces”, Bulletin of the Institute of Mathematics Academia Sinica, 27 (1999), 187–212 | MR | Zbl

[2] Ahmed, S. E., Giuliano Antonini, R., Volodin, A., “On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements with applications to moving average processes”, Statist. Probab. Lett., 58 (2002), 185–194 | DOI | MR | Zbl

[3] Gut, A.,, “Complete convergence for arrays”, Periodica Math. Hungarica, 25 (1992), 51–75 | DOI | MR | Zbl

[4] Hsu, P. L., and Robbins, H., “Complete convergence and the law of large numbers”, Proc. Nat. Acad. Sci. U.S.A., 33 (1947), 25–31 | DOI | MR | Zbl

[5] Hu, T.-C., Li, D., Rosalsky, A., and Volodin, A., “On the rate of complete convergence for weighted sums of Banach spaces valued random elements”, Theory Probab. Appl., 47 (2002), 455–468 | MR | Zbl

[6] Hu, T.-C., Moricz, F., and Taylor, R. L., “Strong laws of large numbers for arrays of rowwise independent random variables”, Acta Math. Acad. Sci. Hungar., 54 (1989), 153–162 | MR | Zbl

[7] Hu, T.-C., Rosalsky, A., Szynal, D., and Volodin, A., “On complete convergence for arrays of rowwise independent random elements in Banach spaces”, Stochastic Anal. Appl., 17 (1999), 963–992 | DOI | MR | Zbl

[8] Kuczmaszewska, A., and Szynal, D., “On complete convergence in a Banach space”, Internat. J. Math. Math. Sci., 17 (1994), 1–14 | DOI | MR | Zbl

[9] Pruitt, W. E., “Summability of independent random variables”, J. Math. Mech., 15 (1966), 769–776 | MR | Zbl

[10] Rohatgi, V. K., “Convergence of weighted sums of independent random variables”, Proc. Cambridge Philos. Soc., 69 (1971), 305–307 | DOI | MR | Zbl

[11] Sung, S. H., “Complete convergence for weighted sums of arrays of rowwise independent $B$-valued random variables”, Stochastic Anal. Appl., 15 (1997), 255–267 | DOI | MR | Zbl

[12] Taylor, R. L., Stochastic Convergence of Weighted Sums of Random Elements in Linear Spaces, Lect. Notes Math., 672, Springer-Verlag, Berlin, 1978 | MR | Zbl

[13] Wang, X., Rao, M. B., and Yang, X., “Convergence rates on strong laws of large numbers for arrays of rowwise independent elements”, Stochastic Anal. Appl., 11 (1993), 115–132 | DOI | MR | Zbl