Logics that are generated by idempotents
Lobachevskii journal of mathematics, Tome 15 (2004), pp. 11-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper is the generalization of the theorem which represents one of the generally accepted cases concerning the characterization of the logic of idempotents (see [5], [6], [7]). If $R$ is a ring then the $R$-circulant matrices are introduced and some consequences for the logics of idempotents of the corresponding rings. Some convenient examples are added as well. Certain results of this paper may find applications in the foundation of quantum theory.
Keywords: ring and *ring with identity, idempotents, projectors of a *ring.
@article{LJM_2004_15_a1,
     author = {F. Katrno\v{s}ka},
     title = {Logics that are generated by idempotents},
     journal = {Lobachevskii journal of mathematics},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {15},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2004_15_a1/}
}
TY  - JOUR
AU  - F. Katrnoška
TI  - Logics that are generated by idempotents
JO  - Lobachevskii journal of mathematics
PY  - 2004
SP  - 11
EP  - 19
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2004_15_a1/
LA  - en
ID  - LJM_2004_15_a1
ER  - 
%0 Journal Article
%A F. Katrnoška
%T Logics that are generated by idempotents
%J Lobachevskii journal of mathematics
%D 2004
%P 11-19
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2004_15_a1/
%G en
%F LJM_2004_15_a1
F. Katrnoška. Logics that are generated by idempotents. Lobachevskii journal of mathematics, Tome 15 (2004), pp. 11-19. http://geodesic.mathdoc.fr/item/LJM_2004_15_a1/

[1] Beltrametti, Cassinelli, The Logic of Quantum Mechanics, Addison Wesley, Massachusets, 1981 | MR | Zbl

[2] Beran, L., Orthomodular Lattices, Algebraic Approach, Academia, Prague, Reidel, Dordrecht, 1984 | MR

[3] Birkhoff, G., Lattice Theory, Amer. Math. Soc., Providence, Rhode Island, 1973

[4] Davis, P., Circulant Matrices, London, 1970

[5] Flachsmeyer, J., “Note on orthocomplemented posets”, Proc. Conf. Topology and Measure, Greifswald, 1982, 65–75

[6] Kalinin, V. V., “Orthomodular partially ordered sets with dimension”, Algebra and Logics, 15:5 (1976), 535–557 (in Russian) | MR | Zbl

[7] Katrnoška, F., Logics and States of Physical Systems, Thesis, Czech Technical University, Prague, 1980 (in Czech)

[8] Katrnoška, F., Logics of idempotents of rings, Topology, Measure and Fractals, 66, Akad. Verlag, Berlin, 1992 | MR

[9] Katrnoška, F., “On some rings and their $M$-Bases of idempotents”, Proc. of 3rd Scf. Colloq., Prague, 2001, 140–149

[10] Louck J. D., “Doubly stochastic matrices in quantum mechanics”, Found. Phys., 27 (1997), 1085–1104 | DOI | MR

[11] Marcus, M., Minc, H., A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston, 1964 | MR | Zbl

[12] Mushtari, D., “Logics of projectors in Banach spaces”, Izvestija Vuzov (Mat.), 1989, no. 8, 44–52 (in Russian) | MR

[13] Ovchinnikov, P., “Another combinatorial characterization of orthomodular posets”, Measures on Projections and Orthomodular Posets, Kazan Tracts in Math., 4, Kazan Math. Soc., 1998, 87–94 | MR

[14] Svozil, K., Quantum Logic, Springer, Berlin/Heidelberg, 1998 | MR

[15] Ward, M., Dilworth, R. P., “Residuated Lattices”, Trans. Amer. Math. Soc., 45 (1939), 335–354 | DOI | MR | Zbl