Identification of nonlinear coefficient in a~transport equation
Lobachevskii journal of mathematics, Tome 14 (2004), pp. 69-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Considered a problem of identification a nonlinear coefficient in a first order PDE via final observation. The problem is stated as an optimal control problem and solved numerically. Implicit finite difference scheme is used for the approximation of the state equation. A space of control variables is approximated by a sequence of finite-dimensional spaces with increaing dimensions. Finite dimensional problems are solved by a gradient method and numerical results are presented.
Keywords: nonlinear coefficient identification, finite difference scheme, multilevel algorithm.
Mots-clés : transport equation, final observation
@article{LJM_2004_14_a6,
     author = {A. V. Lapin and S. A. Lapin},
     title = {Identification of nonlinear coefficient in a~transport equation},
     journal = {Lobachevskii journal of mathematics},
     pages = {69--84},
     publisher = {mathdoc},
     volume = {14},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2004_14_a6/}
}
TY  - JOUR
AU  - A. V. Lapin
AU  - S. A. Lapin
TI  - Identification of nonlinear coefficient in a~transport equation
JO  - Lobachevskii journal of mathematics
PY  - 2004
SP  - 69
EP  - 84
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2004_14_a6/
LA  - en
ID  - LJM_2004_14_a6
ER  - 
%0 Journal Article
%A A. V. Lapin
%A S. A. Lapin
%T Identification of nonlinear coefficient in a~transport equation
%J Lobachevskii journal of mathematics
%D 2004
%P 69-84
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2004_14_a6/
%G en
%F LJM_2004_14_a6
A. V. Lapin; S. A. Lapin. Identification of nonlinear coefficient in a~transport equation. Lobachevskii journal of mathematics, Tome 14 (2004), pp. 69-84. http://geodesic.mathdoc.fr/item/LJM_2004_14_a6/

[1] Chavent G., Lemonnier P., “Identification de la Non-Linearité D'Une Équation Parabolique Quasilineaire”, Applied Mathematics and Optimization, 1 2 (1974), 121–162 | DOI | MR | Zbl

[2] DuChateau P., “An Inverse Problem for the Hydraulic Properties of Porous Media”, SIAM J. Math. Analysis, 28:3 (1997), 611–632 | DOI | MR | Zbl

[3] Igler B., Totsche K. U., Knabner P., Unbiased Identification of Nonlinear Sorption Characteristics by Soil Column Breakthrough Experiments, Preprint IAM Erlangen, No. 224, 1997

[4] Knabner P., Igler B., “Structural Identification of Nonlinear Coefficient Functions in Transport Processes through porous media”, Lectures on Applied Mathematics, Springer Verlag, 2000, 157–178 | MR

[5] Lions J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer Verlag, New York, 1971 | MR | Zbl