Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2003_13_a3, author = {K. Kaur}, title = {Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums}, journal = {Lobachevskii journal of mathematics}, pages = {39--44}, publisher = {mathdoc}, volume = {13}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2003_13_a3/} }
K. Kaur. Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums. Lobachevskii journal of mathematics, Tome 13 (2003), pp. 39-44. http://geodesic.mathdoc.fr/item/LJM_2003_13_a3/
[1] W. O. Bray and Č. V. Stanojević, “Tauberian $L^1$-convergence class of Fourier series”, Trans. Amer. Math. Soc., 275 (1983), 59–69 | DOI | MR | Zbl
[2] G. A. Fomin, “A class of trigonometric series”, Mat. Zametki, 23 (1978), 213–222 | MR | Zbl
[3] J. W. Garrett and Č. V. Stanojević, “On $L^1$-convergence of certain cosine sums”, Proc. Amer. Math. Soc., 54 (1976), 101–105 | DOI | MR | Zbl
[4] A. N. Kolmogorov, “Sur I', Ordre des coefficients de Ia serie de Fourier-Lebesgue”, Bull. Acad. Polon. Ser. Sci. Math. Astronom Phys., 1923, 83–86
[5] J. E. Littlewood, “The convergence of Abel's Theorem on power series”, Pro. London. Math. Soc., 9 (1911), 434–448 | DOI | MR | Zbl
[6] Č. V. Stanojević, “Tauberian conditions $L^1$-convergence of Fourier series”, Trans. Amer. Math. Soc., 271 (1982), 237–244 | DOI | MR | Zbl
[7] S. A. Telyakosvskii, “On conditions of integrability of multiple trigonometric series”, Trudy Mat. Inst. Steklov., 164, 1983, 180–188 (Russian) | MR
[8] A. Zygmund, Trigonometric Series, Cambridge University Press, 1959 | MR | Zbl