Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums
Lobachevskii journal of mathematics, Tome 13 (2003), pp. 39-44

Voir la notice de l'article provenant de la source Math-Net.Ru

An $L^1$-convergence property of the complex form $g_n(c,t)=S_n(c,t)-[c_nE_n(t)+c_{-n}E_{-n}(t)]$ of the modified sums introduced by Garrett and Stanojević [3] is established and a necessary and sufficient condition for $L^1$-convergence of Fourier series is obtained.
@article{LJM_2003_13_a3,
     author = {K. Kaur},
     title = {Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums},
     journal = {Lobachevskii journal of mathematics},
     pages = {39--44},
     publisher = {mathdoc},
     volume = {13},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2003_13_a3/}
}
TY  - JOUR
AU  - K. Kaur
TI  - Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums
JO  - Lobachevskii journal of mathematics
PY  - 2003
SP  - 39
EP  - 44
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2003_13_a3/
LA  - en
ID  - LJM_2003_13_a3
ER  - 
%0 Journal Article
%A K. Kaur
%T Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums
%J Lobachevskii journal of mathematics
%D 2003
%P 39-44
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2003_13_a3/
%G en
%F LJM_2003_13_a3
K. Kaur. Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums. Lobachevskii journal of mathematics, Tome 13 (2003), pp. 39-44. http://geodesic.mathdoc.fr/item/LJM_2003_13_a3/