Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums
Lobachevskii journal of mathematics, Tome 13 (2003), pp. 39-44
Voir la notice de l'article provenant de la source Math-Net.Ru
An $L^1$-convergence property of the complex form $g_n(c,t)=S_n(c,t)-[c_nE_n(t)+c_{-n}E_{-n}(t)]$ of the modified sums introduced by Garrett and Stanojević [3] is established and a necessary and sufficient condition for $L^1$-convergence of Fourier series is obtained.
@article{LJM_2003_13_a3,
author = {K. Kaur},
title = {Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums},
journal = {Lobachevskii journal of mathematics},
pages = {39--44},
publisher = {mathdoc},
volume = {13},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_2003_13_a3/}
}
K. Kaur. Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums. Lobachevskii journal of mathematics, Tome 13 (2003), pp. 39-44. http://geodesic.mathdoc.fr/item/LJM_2003_13_a3/