Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums
Lobachevskii journal of mathematics, Tome 13 (2003), pp. 39-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

An $L^1$-convergence property of the complex form $g_n(c,t)=S_n(c,t)-[c_nE_n(t)+c_{-n}E_{-n}(t)]$ of the modified sums introduced by Garrett and Stanojević [3] is established and a necessary and sufficient condition for $L^1$-convergence of Fourier series is obtained.
@article{LJM_2003_13_a3,
     author = {K. Kaur},
     title = {Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums},
     journal = {Lobachevskii journal of mathematics},
     pages = {39--44},
     publisher = {mathdoc},
     volume = {13},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2003_13_a3/}
}
TY  - JOUR
AU  - K. Kaur
TI  - Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums
JO  - Lobachevskii journal of mathematics
PY  - 2003
SP  - 39
EP  - 44
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2003_13_a3/
LA  - en
ID  - LJM_2003_13_a3
ER  - 
%0 Journal Article
%A K. Kaur
%T Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums
%J Lobachevskii journal of mathematics
%D 2003
%P 39-44
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2003_13_a3/
%G en
%F LJM_2003_13_a3
K. Kaur. Tauberian conditions for $L^1$-convergence of modified complex trigonometric sums. Lobachevskii journal of mathematics, Tome 13 (2003), pp. 39-44. http://geodesic.mathdoc.fr/item/LJM_2003_13_a3/

[1] W. O. Bray and Č. V. Stanojević, “Tauberian $L^1$-convergence class of Fourier series”, Trans. Amer. Math. Soc., 275 (1983), 59–69 | DOI | MR | Zbl

[2] G. A. Fomin, “A class of trigonometric series”, Mat. Zametki, 23 (1978), 213–222 | MR | Zbl

[3] J. W. Garrett and Č. V. Stanojević, “On $L^1$-convergence of certain cosine sums”, Proc. Amer. Math. Soc., 54 (1976), 101–105 | DOI | MR | Zbl

[4] A. N. Kolmogorov, “Sur I', Ordre des coefficients de Ia serie de Fourier-Lebesgue”, Bull. Acad. Polon. Ser. Sci. Math. Astronom Phys., 1923, 83–86

[5] J. E. Littlewood, “The convergence of Abel's Theorem on power series”, Pro. London. Math. Soc., 9 (1911), 434–448 | DOI | MR | Zbl

[6] Č. V. Stanojević, “Tauberian conditions $L^1$-convergence of Fourier series”, Trans. Amer. Math. Soc., 271 (1982), 237–244 | DOI | MR | Zbl

[7] S. A. Telyakosvskii, “On conditions of integrability of multiple trigonometric series”, Trudy Mat. Inst. Steklov., 164, 1983, 180–188 (Russian) | MR

[8] A. Zygmund, Trigonometric Series, Cambridge University Press, 1959 | MR | Zbl