Boundedness for commutators of Littlewood-Paley operators on some hardy spaces
Lobachevskii journal of mathematics, Tome 12 (2003), pp. 63-71
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper the $(H_b^p,L^p)$-type and $(H_b^{p,\infty},L^{p,\infty})$-type boundedness for the commutators associated with the Littlewood-Paley operators and $b\in BMO(R^n)$ are obtained, where $H^p_b$ and $H_b^{p,\infty}$ are, respectively, variants of the standard Hardy spaces and weak Hardy spaces, and $n/(n+\varepsilon)$.
Keywords: Littlewood-Paley operator, Commutator, $BMO(R^n)$, Hardy space, Weak Hardy space.
@article{LJM_2003_12_a4,
     author = {L. Lanzhe},
     title = {Boundedness for commutators of {Littlewood-Paley} operators on some hardy spaces},
     journal = {Lobachevskii journal of mathematics},
     pages = {63--71},
     year = {2003},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2003_12_a4/}
}
TY  - JOUR
AU  - L. Lanzhe
TI  - Boundedness for commutators of Littlewood-Paley operators on some hardy spaces
JO  - Lobachevskii journal of mathematics
PY  - 2003
SP  - 63
EP  - 71
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/LJM_2003_12_a4/
LA  - en
ID  - LJM_2003_12_a4
ER  - 
%0 Journal Article
%A L. Lanzhe
%T Boundedness for commutators of Littlewood-Paley operators on some hardy spaces
%J Lobachevskii journal of mathematics
%D 2003
%P 63-71
%V 12
%U http://geodesic.mathdoc.fr/item/LJM_2003_12_a4/
%G en
%F LJM_2003_12_a4
L. Lanzhe. Boundedness for commutators of Littlewood-Paley operators on some hardy spaces. Lobachevskii journal of mathematics, Tome 12 (2003), pp. 63-71. http://geodesic.mathdoc.fr/item/LJM_2003_12_a4/

[1] J. Alvarez, “Continuity properties for linear commutators of Calderon-Zygmund operators”, Collect. Math., 49 (1998), 17–31 | MR | Zbl

[2] J. Alvarez, R. J. Babgy, D. S. Kurtz and C. Perez, “Weighted estimates for commutators of linear operators”, Studia Math., 104 (1993), 195–209 | MR | Zbl

[3] R. Coifman, R. Rochberg and G. Weiss, “Factorization theorem for Hardy spaces in several variables”, Ann. of Math., 103 (1976), 611–635 | DOI | MR | Zbl

[4] H. Liu, “The weak Hp spaces on homogeneous groups”, Lecture Notes in Math., 1494, Springer-Verlag, 1991, 113–118 | MR | Zbl

[5] B. Muckenhoupt, R. L. Wheede, “Norm inequalities for the Littlewood-Paley function”, Trans. Amer. Math. Soc., 191 (1974), 95–111 | DOI | MR | Zbl

[6] C. Perez, “Endpoint estimates for commutators of singular integral operators”, J. Func. Anal., 128 (1995), 163–185 | DOI | MR | Zbl

[7] E. M. Stein, Harmonic Analysis: real variable methods, orthogonality and oscillation integrals, Princeton Univ. Press, Princeton, NJ, 1993 | Zbl

[8] E. M. Stein, M. Taibleson and G. Weiss, “Weak type estimates for maximal operators on certain $H^p$ spaces”, Supp. Rend. Circ. Mat. Pal., 1 (1981), 81–97 | MR | Zbl

[9] A. Torchinsky, The real variable methods in harmonic analysis, Pure and Applied Math., 123, Academic Press, New York, 1986 | MR | Zbl