Boundedness for commutators of Littlewood-Paley operators on some hardy spaces
Lobachevskii journal of mathematics, Tome 12 (2003), pp. 63-71
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper the $(H_b^p,L^p)$-type and $(H_b^{p,\infty},L^{p,\infty})$-type boundedness for the commutators associated with the Littlewood-Paley operators and $b\in BMO(R^n)$ are obtained, where $H^p_b$ and $H_b^{p,\infty}$ are, respectively, variants of the standard Hardy spaces and weak Hardy spaces, and $n/(n+\varepsilon)$.
Keywords:
Littlewood-Paley operator, Commutator, $BMO(R^n)$, Hardy space, Weak Hardy space.
@article{LJM_2003_12_a4,
author = {L. Lanzhe},
title = {Boundedness for commutators of {Littlewood-Paley} operators on some hardy spaces},
journal = {Lobachevskii journal of mathematics},
pages = {63--71},
publisher = {mathdoc},
volume = {12},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_2003_12_a4/}
}
L. Lanzhe. Boundedness for commutators of Littlewood-Paley operators on some hardy spaces. Lobachevskii journal of mathematics, Tome 12 (2003), pp. 63-71. http://geodesic.mathdoc.fr/item/LJM_2003_12_a4/