@article{LJM_2003_12_a4,
author = {L. Lanzhe},
title = {Boundedness for commutators of {Littlewood-Paley} operators on some hardy spaces},
journal = {Lobachevskii journal of mathematics},
pages = {63--71},
year = {2003},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_2003_12_a4/}
}
L. Lanzhe. Boundedness for commutators of Littlewood-Paley operators on some hardy spaces. Lobachevskii journal of mathematics, Tome 12 (2003), pp. 63-71. http://geodesic.mathdoc.fr/item/LJM_2003_12_a4/
[1] J. Alvarez, “Continuity properties for linear commutators of Calderon-Zygmund operators”, Collect. Math., 49 (1998), 17–31 | MR | Zbl
[2] J. Alvarez, R. J. Babgy, D. S. Kurtz and C. Perez, “Weighted estimates for commutators of linear operators”, Studia Math., 104 (1993), 195–209 | MR | Zbl
[3] R. Coifman, R. Rochberg and G. Weiss, “Factorization theorem for Hardy spaces in several variables”, Ann. of Math., 103 (1976), 611–635 | DOI | MR | Zbl
[4] H. Liu, “The weak Hp spaces on homogeneous groups”, Lecture Notes in Math., 1494, Springer-Verlag, 1991, 113–118 | MR | Zbl
[5] B. Muckenhoupt, R. L. Wheede, “Norm inequalities for the Littlewood-Paley function”, Trans. Amer. Math. Soc., 191 (1974), 95–111 | DOI | MR | Zbl
[6] C. Perez, “Endpoint estimates for commutators of singular integral operators”, J. Func. Anal., 128 (1995), 163–185 | DOI | MR | Zbl
[7] E. M. Stein, Harmonic Analysis: real variable methods, orthogonality and oscillation integrals, Princeton Univ. Press, Princeton, NJ, 1993 | Zbl
[8] E. M. Stein, M. Taibleson and G. Weiss, “Weak type estimates for maximal operators on certain $H^p$ spaces”, Supp. Rend. Circ. Mat. Pal., 1 (1981), 81–97 | MR | Zbl
[9] A. Torchinsky, The real variable methods in harmonic analysis, Pure and Applied Math., 123, Academic Press, New York, 1986 | MR | Zbl