Convergence for step line processes under summation of random indicators and models of market pricing
Lobachevskii journal of mathematics, Tome 12 (2003), pp. 11-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Functional limit theorems for random step lines and random broken lines defined by sums of iid random variables with replacements are obtained and discussed. Also we obtained functional limit theorems for integrals of such random processes. We use our results to study a number of models of the financial market.
@article{LJM_2003_12_a1,
     author = {A. N. Chuprunov and O. V. Rusakov},
     title = {Convergence for step line processes under summation of random indicators and models of market pricing},
     journal = {Lobachevskii journal of mathematics},
     pages = {11--39},
     year = {2003},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2003_12_a1/}
}
TY  - JOUR
AU  - A. N. Chuprunov
AU  - O. V. Rusakov
TI  - Convergence for step line processes under summation of random indicators and models of market pricing
JO  - Lobachevskii journal of mathematics
PY  - 2003
SP  - 11
EP  - 39
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/LJM_2003_12_a1/
LA  - en
ID  - LJM_2003_12_a1
ER  - 
%0 Journal Article
%A A. N. Chuprunov
%A O. V. Rusakov
%T Convergence for step line processes under summation of random indicators and models of market pricing
%J Lobachevskii journal of mathematics
%D 2003
%P 11-39
%V 12
%U http://geodesic.mathdoc.fr/item/LJM_2003_12_a1/
%G en
%F LJM_2003_12_a1
A. N. Chuprunov; O. V. Rusakov. Convergence for step line processes under summation of random indicators and models of market pricing. Lobachevskii journal of mathematics, Tome 12 (2003), pp. 11-39. http://geodesic.mathdoc.fr/item/LJM_2003_12_a1/

[1] Kolchin, V. F., Sevast'ianov, B. A., Chistiakov, V. P., Random occupations, Nauka, M., 1976 (in Russian) | Zbl

[2] Kruglov V. M. and Koroglev V. Iu., Limit theorems for random sums, Moscow University Press, Moscow, 1990 (in Russian) | MR | Zbl

[3] Prokhorov, Yu. V., “Convergence of random processes and limit theorems of theory of probability”, Theory of Probability and Its Applications, 1:2 (1956), 117–238 (in Russian) | DOI

[4] Gihman I. I. and Skorokhod A. V., Introduction to the theory of stochastic processes, Nauka, Moscow, 1977 (in Russian)

[5] Fazekas, I., Chuprunov, A., Convergence of random step lines to Ornstein–Uhlenbeck type processes, Technical Report of the Debrecen University, No. 24/1996, 1996

[6] Rusakov, O. V., “The functional limit theorem for random variables with strong remaining dependence”, Theory of Probability and Its Applications, 40 (1995), 813–832 (in Russian) | DOI | MR | Zbl

[7] Loév, M., Probability theory, D. van Nostand company inc., Princeton - New Jersey - Toronto, New-York - London, 1960 | MR | Zbl

[8] Billingsley P., Convergence of probability measures, John Wiley Sons., New York - London - Sydney - Toronto, 1968 | MR | Zbl

[9] Rusakov O. V., A model of market pricing with randomly distributed information and the geometric integral of the Ornstein-Uhlenbeck process, Report of the Department of Mathematics, University of Helsinki, Preprint 184, 1998, 13 pp.

[10] Rusakov O. V., “Asymptotic behavior of sums of random variables with random replacements”, Zapiski nauchnih seminarov POMI, 216, St. Petersburg, 1994, 714–728