A~note on pseudocongruences in semigroups
Lobachevskii journal of mathematics, Tome 11 (2002), pp. 19-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [1] we introduced the concept of pseudoorder in ordered semigroups and we proved that each pseudoorder on an ordered semigroup $S$ induces a congruence $\sigma$ on $S$ such that $S/\sigma$ is an ordered semigroup. In this short note we introduce the concept of pseudocongruence in semigroups and we prove that each pseudocongruence on a semigroup $S$ induces a congruence $\sigma$ on $S$ such that $S/\sigma$ is an ordered semigroup.
Keywords: ordered semigroup, pseudocongruence in semigroup.
@article{LJM_2002_11_a3,
     author = {N. Kehayopulu and M. Tsingelis},
     title = {A~note on pseudocongruences in semigroups},
     journal = {Lobachevskii journal of mathematics},
     pages = {19--21},
     publisher = {mathdoc},
     volume = {11},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2002_11_a3/}
}
TY  - JOUR
AU  - N. Kehayopulu
AU  - M. Tsingelis
TI  - A~note on pseudocongruences in semigroups
JO  - Lobachevskii journal of mathematics
PY  - 2002
SP  - 19
EP  - 21
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2002_11_a3/
LA  - en
ID  - LJM_2002_11_a3
ER  - 
%0 Journal Article
%A N. Kehayopulu
%A M. Tsingelis
%T A~note on pseudocongruences in semigroups
%J Lobachevskii journal of mathematics
%D 2002
%P 19-21
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2002_11_a3/
%G en
%F LJM_2002_11_a3
N. Kehayopulu; M. Tsingelis. A~note on pseudocongruences in semigroups. Lobachevskii journal of mathematics, Tome 11 (2002), pp. 19-21. http://geodesic.mathdoc.fr/item/LJM_2002_11_a3/

[1] N. Kehayopulu and M. Tsingelis, “On subdirectly irreducible ordered semigroups”, Semigroup Forum, 50 (1995), 161–177 | DOI | MR | Zbl

[2] Xie Xiang-Yun, “Fuzzy ideal extensions of semigroups”, Soochow J. Math., 27:2 (2001), 125–138 | MR | Zbl