On the coefficient multipliers theorem of Hardy and Littlewood
Lobachevskii journal of mathematics, Tome 11 (2002), pp. 7-12

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $a_n(f)$ be the Taylor coefficients of a holomorphic function $f$ which belongs to the Hardy space $H^p$, $0$. We prove the estimate $C(p)\leq\pi\epsilon^p/[p(1-p)]$ in the Hardy-Littlewood inequality $$ \sum_{n=0}^\infty\frac{|a_n(f)|^p}{(n+1)^{2-p}}\leq C(p)(\| f \|_p)^p. $$ We also give explicit estimates for sums $\sum|a_n(f)\lambda_n|^s$ the mixed norm space $H(1,s,\beta)$. In this way we obtain a new version of some results by Blasco and by Jevtič and Pavlovič.
@article{LJM_2002_11_a1,
     author = {F. G. Avkhadiev and K.-J. Wirths},
     title = {On the coefficient multipliers theorem of {Hardy} and {Littlewood}},
     journal = {Lobachevskii journal of mathematics},
     pages = {7--12},
     publisher = {mathdoc},
     volume = {11},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2002_11_a1/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
AU  - K.-J. Wirths
TI  - On the coefficient multipliers theorem of Hardy and Littlewood
JO  - Lobachevskii journal of mathematics
PY  - 2002
SP  - 7
EP  - 12
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2002_11_a1/
LA  - en
ID  - LJM_2002_11_a1
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%A K.-J. Wirths
%T On the coefficient multipliers theorem of Hardy and Littlewood
%J Lobachevskii journal of mathematics
%D 2002
%P 7-12
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2002_11_a1/
%G en
%F LJM_2002_11_a1
F. G. Avkhadiev; K.-J. Wirths. On the coefficient multipliers theorem of Hardy and Littlewood. Lobachevskii journal of mathematics, Tome 11 (2002), pp. 7-12. http://geodesic.mathdoc.fr/item/LJM_2002_11_a1/