On the coefficient multipliers theorem of Hardy and Littlewood
Lobachevskii journal of mathematics, Tome 11 (2002), pp. 7-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $a_n(f)$ be the Taylor coefficients of a holomorphic function $f$ which belongs to the Hardy space $H^p$, $0$. We prove the estimate $C(p)\leq\pi\epsilon^p/[p(1-p)]$ in the Hardy-Littlewood inequality $$ \sum_{n=0}^\infty\frac{|a_n(f)|^p}{(n+1)^{2-p}}\leq C(p)(\| f \|_p)^p. $$ We also give explicit estimates for sums $\sum|a_n(f)\lambda_n|^s$ the mixed norm space $H(1,s,\beta)$. In this way we obtain a new version of some results by Blasco and by Jevtič and Pavlovič.
@article{LJM_2002_11_a1,
     author = {F. G. Avkhadiev and K.-J. Wirths},
     title = {On the coefficient multipliers theorem of {Hardy} and {Littlewood}},
     journal = {Lobachevskii journal of mathematics},
     pages = {7--12},
     publisher = {mathdoc},
     volume = {11},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2002_11_a1/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
AU  - K.-J. Wirths
TI  - On the coefficient multipliers theorem of Hardy and Littlewood
JO  - Lobachevskii journal of mathematics
PY  - 2002
SP  - 7
EP  - 12
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2002_11_a1/
LA  - en
ID  - LJM_2002_11_a1
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%A K.-J. Wirths
%T On the coefficient multipliers theorem of Hardy and Littlewood
%J Lobachevskii journal of mathematics
%D 2002
%P 7-12
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2002_11_a1/
%G en
%F LJM_2002_11_a1
F. G. Avkhadiev; K.-J. Wirths. On the coefficient multipliers theorem of Hardy and Littlewood. Lobachevskii journal of mathematics, Tome 11 (2002), pp. 7-12. http://geodesic.mathdoc.fr/item/LJM_2002_11_a1/

[1] F. G. Avkhadiev and K.-J. Wirths, “Asymptotically sharp bounds in the Hardy–Littlewood inequalities on mean values of analytic functions”, Bull. London Math. Soc., 33 (2001), 695–700 | DOI | MR | Zbl

[2] O. Blanco, “Multipliers on spaces of analytic functions”, Can. J. Math., 47 (1995), 44–64 | MR

[3] D. M. Campbell and R. J. Leach, “A Survey of Hp Multipliers as related to classical”, Function Theorie, Complex Var., 3 (1984), 85–111 | MR | Zbl

[4] P. L. Duren, Theorie of $H^p$ spaces, Academic Press, New York /San Francisko /London, 1970 | MR

[5] P. L. Duren and A. L. Shields, “Coefficient Multipliers of $H^p$ and $B^p$ spaces”, Pacific J. Math., 32 (1970), 69–78 | MR | Zbl

[6] T. M. Flett, “The dual of an inequality of Hardy and Littlewood and some related Inequalities”, J. Math. Anal. Appl., 38 (1972), 746–765 | DOI | MR | Zbl

[7] M. Jevtić and M. Pavlović, “Coefficient multipliers on spaces of analytic functions”, Acta Sci. Math. (Szeged), 64 (1998), 531–545 | MR | Zbl