Complete convergence of weighted sums in Banach spaces and the bootstrap mean
Lobachevskii journal of mathematics, Tome 10 (2002), pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{X_{ni},1\le i\le k_n, n\ge 1\}$ be an array of rowwise independent random elements taking values in a real separable Banach space, and $\{a_{ni},1\le i\le k_n, n\ge 1\}$ an array of constants. Under some conditions of Chung [7] and Hu and Taylor [10] types for the arrays, and using a theorem of Hu et al. [9], the equivalence amongst various kinds of convergence of $\sum_{i=1}^{k_n}a_{ni}X_{ni}$ to zero is obtained. It leads to an unified vision of recent results in the literature. The authors use the main result in the paper in order to obtain the strong consistency of the bootstrapped mean of random elements in a Banach space from its weak consistency.
Keywords: random elements, Banach spaces, weighted sums, rowwise independence, complete convergence, bootstrap mean.
@article{LJM_2002_10_a2,
     author = {T.-Ch. Hu and M. Ord\'o\~nez Cabrera and S. H. Sung and A. I. Volodin},
     title = {Complete convergence of weighted sums in {Banach} spaces and the bootstrap mean},
     journal = {Lobachevskii journal of mathematics},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {10},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2002_10_a2/}
}
TY  - JOUR
AU  - T.-Ch. Hu
AU  - M. Ordóñez Cabrera
AU  - S. H. Sung
AU  - A. I. Volodin
TI  - Complete convergence of weighted sums in Banach spaces and the bootstrap mean
JO  - Lobachevskii journal of mathematics
PY  - 2002
SP  - 17
EP  - 26
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2002_10_a2/
LA  - en
ID  - LJM_2002_10_a2
ER  - 
%0 Journal Article
%A T.-Ch. Hu
%A M. Ordóñez Cabrera
%A S. H. Sung
%A A. I. Volodin
%T Complete convergence of weighted sums in Banach spaces and the bootstrap mean
%J Lobachevskii journal of mathematics
%D 2002
%P 17-26
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2002_10_a2/
%G en
%F LJM_2002_10_a2
T.-Ch. Hu; M. Ordóñez Cabrera; S. H. Sung; A. I. Volodin. Complete convergence of weighted sums in Banach spaces and the bootstrap mean. Lobachevskii journal of mathematics, Tome 10 (2002), pp. 17-26. http://geodesic.mathdoc.fr/item/LJM_2002_10_a2/

[1] de Acosta, A., “Inequalities for B-valued random vectors with applications to the strong law of large numbers”, Ann. Probab., 9 (1981), 157–161 | DOI | MR | Zbl

[2] Ahmed, S. E., Hu, T. C. and Volodin, A. I., “On the rate of convergence of botstrapped means in a Banach space”, Internat. J. Math. Math. Sci., 25 (2001), 629–635 | DOI | MR | Zbl

[3] Berger, E., “Majorization, exponential inequalities and almost sure behavior of vector-valued random variables”, Ann. Probab., 19 (1991), 1206–1226 | DOI | MR | Zbl

[4] Bozorgnia, A., Patterson, R. F. and Taylor, R. L., “Chung type strong laws for arrays of random elements and bootstrapping”, Stochastic Anal. Appl., 15 (1997), 651–669 | DOI | MR | Zbl

[5] Choi, B. D. and Sung, S. H., “On Chung's strong law of large numbers in general Banach spaces”, Bull. Austral. Math. Soc., 37 (1988), 93–100 | DOI | MR | Zbl

[6] Choi, B. D. and Sung, S. H., “On Teicher's strong law of large numbers in general Banach spaces”, Probab. Math. Statist., 10 (1989), 137–142 | MR | Zbl

[7] Chung, K. L., “Note on some strong laws of large numbers”, Amer. J. Math., 69 (1947), 189–192 | DOI | MR | Zbl

[8] Hsu, P. L. and Robbins, H., “Complete convergence and the law of large numbers”, Proc. Nat. Acad. Sci. U.S.A., 33 (1947), 25–31 | DOI | MR | Zbl

[9] Hu, T.-C., Rosalsky, A., Szynal, D., Volodin, A., “On complete convergence for arrays of rowwise independent random elements in Banach spaces”, Stochastic Anal. Appl., 17 (1999), 963–992 | DOI | MR | Zbl

[10] Hu, T. C. and Taylor, R. L., “On the strong law for arrays and for the bootstrap mean and variance”, Internat. J. Math. Math. Sci., 20 (1997), 375–382 | DOI | MR | Zbl

[11] Kuczmaszewska, A. and Szynal, D., “On complete convergence in a Banach space”, Internat. J. Math. Math. Sci., 17 (1994), 1–14 | DOI | MR | Zbl

[12] Kuelbs, J. and Zinn, J., “Some stability results for vector valued random variables”, Ann. Probab., 7 (1979), 75–84 | DOI | MR | Zbl

[13] Ordóñez Cabrera, M. and Sung, S. H., “On complete convergence of weighted sums of random elements”, Stochastic Anal. Appl., 20:1 (2002), 21–32 | DOI | MR | Zbl

[14] Sung, S. H., “Complete convergence for weighted sums of arrays of rowwise independent B-valued random variables”, Stochastic Anal. Appl., 15 (1997), 255–267 | DOI | MR | Zbl

[15] Sung, S. H., “Complete convergence for sums of arrays of random elements”, Internat. J. Math. Math. Sci., 23 (2000), 789–794 | DOI | MR | Zbl

[16] Wang, X. C., Rao, M. B. and Yang, X., “Convergence rates on strong laws of large numbers for arrays of rowwise independent elements”, Stochastic Anal. Appl., 11 (1993), 115–132 | DOI | MR | Zbl