Infinite dimensional extension of A. P. Calderón's theorem on positive semidefinite biquadraric forms
Lobachevskii journal of mathematics, Tome 10 (2002), pp. 3-8
We extend to the infinite dimensional separable real Hilbert spaces a theorem of A. P. Calderón which says that, if $m=2$ or $n=2$, then every positive semidefinite biquadratic form on $\mathbf R^m\times\mathbf R^n$ is a sum of squares of bilinear forms.
Keywords:
biquadratic form, positive operator, Hilbert–Schmidt operator.
@article{LJM_2002_10_a0,
author = {B. Aqzzouz and M. Kadiri},
title = {Infinite dimensional extension of {A.} {P.~Calder\'on's} theorem on positive semidefinite biquadraric forms},
journal = {Lobachevskii journal of mathematics},
pages = {3--8},
year = {2002},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_2002_10_a0/}
}
TY - JOUR AU - B. Aqzzouz AU - M. Kadiri TI - Infinite dimensional extension of A. P. Calderón's theorem on positive semidefinite biquadraric forms JO - Lobachevskii journal of mathematics PY - 2002 SP - 3 EP - 8 VL - 10 UR - http://geodesic.mathdoc.fr/item/LJM_2002_10_a0/ LA - en ID - LJM_2002_10_a0 ER -
B. Aqzzouz; M. Kadiri. Infinite dimensional extension of A. P. Calderón's theorem on positive semidefinite biquadraric forms. Lobachevskii journal of mathematics, Tome 10 (2002), pp. 3-8. http://geodesic.mathdoc.fr/item/LJM_2002_10_a0/
[1] A. P. Calderón, “A note on biquadratic forms”, Linear Algebra Appl., 7 (1973), 175–177 | DOI | MR | Zbl
[2] M.-D. Choi, “Positive semidefinite biquadratic forms”, Linear Algebra Appl., 12 (1975), 95–100 | DOI | MR | Zbl
[3] M. El Kadiri, “Sur les génératrices extrémales de certains cônes de formes quadratiques doublement positives”, C. R. Acad. Sci. Paris, Ser. I, 324 (1997), 421–425 | MR | Zbl
[4] M. El Kadiri, “Opérateurs positifs sur certains espaces de formes quadratiques”, Linear Algebra Appl., 283 (1998), 273–288 | DOI | MR | Zbl