An analog of the Vaisman--Molino cohomology for manifolds Modelled on
Lobachevskii journal of mathematics, Tome 9 (2001), pp. 55-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

An epimorphism $\mu:\mathbf A\to\mathbf B$ of local Weil algebras induces the functor $T^\mu$ from the category of fibered manifolds to itself which assigns to a fibered manifold $p\colon M\to N$ the fibered product $p^\mu\colon T^{\mathbf A}N\times{}_{{T^B}N}T^{\mathbf B}M\to T^{\mathbf A}N$. In this paper we show that the manifold $T^{\mathbf A}N\times{}_{{T^B}N}T^{\mathbf B}M$ can be naturally endowed with a structure of an $\mathbf A$-smooth manifold modelled on the $\mathbf A$-module $\mathbf L={\mathbf A}^n\oplus{\mathbf B}^m$, where $n=\dim N$, $n+m=\dim M$. We extend the functor $T^\mu$ to the category of foliated manifolds $(M,\mathcal F)$. Then we study $\mathbf A$-smooth manifolds $M^\mathbf L$ whose foliated structure is locally equivalent to that of $T^{\mathbf A}N\times{}_{{T^B}N}T^{\mathbf B}M$. For such manifolds $M^\mathbf L$ we construct bigraduated cohomology groups which are similar to the bigraduated cohomology groups of foliated manifolds and generalize the bigraduated cohomology groups of $\mathbf A$-smooth manifolds modelled on $\mathbf A$-modules of the type ${\mathbf A}^n$. As an application, we express the obstructions for existence of an $\mathbf A$-smooth linear connection on $M^\mathbf L$ in terms of the introduced cohomology groups.
@article{LJM_2001_9_a6,
     author = {V. V. Shurygin and L. {\CYRV}. Smolyakova},
     title = {An analog of the {Vaisman--Molino} cohomology for manifolds {Modelled} on},
     journal = {Lobachevskii journal of mathematics},
     pages = {55--75},
     publisher = {mathdoc},
     volume = {9},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2001_9_a6/}
}
TY  - JOUR
AU  - V. V. Shurygin
AU  - L. В. Smolyakova
TI  - An analog of the Vaisman--Molino cohomology for manifolds Modelled on
JO  - Lobachevskii journal of mathematics
PY  - 2001
SP  - 55
EP  - 75
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2001_9_a6/
LA  - en
ID  - LJM_2001_9_a6
ER  - 
%0 Journal Article
%A V. V. Shurygin
%A L. В. Smolyakova
%T An analog of the Vaisman--Molino cohomology for manifolds Modelled on
%J Lobachevskii journal of mathematics
%D 2001
%P 55-75
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2001_9_a6/
%G en
%F LJM_2001_9_a6
V. V. Shurygin; L. В. Smolyakova. An analog of the Vaisman--Molino cohomology for manifolds Modelled on. Lobachevskii journal of mathematics, Tome 9 (2001), pp. 55-75. http://geodesic.mathdoc.fr/item/LJM_2001_9_a6/