On Hausdorff intrinsic metric
Lobachevskii journal of mathematics, Tome 8 (2001), pp. 185-189
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove that in the set of all nonempty bounded closed subsets of a metric space $(X,\rho)$ the Hausdorff metric is the Hausdorff intrinsic metric if and only if the metric $\rho$ is an intrinsic metric. In a space with an intrinsic metric we obtain the upper bound for the Hausdorff distance between generalized balls.
@article{LJM_2001_8_a4,
author = {E. N. Sosov},
title = {On {Hausdorff} intrinsic metric},
journal = {Lobachevskii journal of mathematics},
pages = {185--189},
publisher = {mathdoc},
volume = {8},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_2001_8_a4/}
}
E. N. Sosov. On Hausdorff intrinsic metric. Lobachevskii journal of mathematics, Tome 8 (2001), pp. 185-189. http://geodesic.mathdoc.fr/item/LJM_2001_8_a4/