On Hausdorff intrinsic metric
Lobachevskii journal of mathematics, Tome 8 (2001), pp. 185-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that in the set of all nonempty bounded closed subsets of a metric space $(X,\rho)$ the Hausdorff metric is the Hausdorff intrinsic metric if and only if the metric $\rho$ is an intrinsic metric. In a space with an intrinsic metric we obtain the upper bound for the Hausdorff distance between generalized balls.
@article{LJM_2001_8_a4,
     author = {E. N. Sosov},
     title = {On {Hausdorff} intrinsic metric},
     journal = {Lobachevskii journal of mathematics},
     pages = {185--189},
     publisher = {mathdoc},
     volume = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2001_8_a4/}
}
TY  - JOUR
AU  - E. N. Sosov
TI  - On Hausdorff intrinsic metric
JO  - Lobachevskii journal of mathematics
PY  - 2001
SP  - 185
EP  - 189
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2001_8_a4/
LA  - en
ID  - LJM_2001_8_a4
ER  - 
%0 Journal Article
%A E. N. Sosov
%T On Hausdorff intrinsic metric
%J Lobachevskii journal of mathematics
%D 2001
%P 185-189
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2001_8_a4/
%G en
%F LJM_2001_8_a4
E. N. Sosov. On Hausdorff intrinsic metric. Lobachevskii journal of mathematics, Tome 8 (2001), pp. 185-189. http://geodesic.mathdoc.fr/item/LJM_2001_8_a4/