On the eta invariant, stable positive scalar curvature, and higher $\hat A$-genera
Lobachevskii journal of mathematics, Tome 8 (2001), pp. 3-18
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the eta invariant provides obstructions to the existence, and stable existence, of positive scalar curvature metrics on odd dimensional closed connected spin smooth manifolds. We also prove, using the eta invariant, that the “stable existence” of a positive
scalar curvature metric implies the vanishing of some higher $\hat A$-genera.
Keywords:
positive scalar curvature, K-theory, index theory.
Mots-clés : eta invariant
Mots-clés : eta invariant
@article{LJM_2001_8_a0,
author = {M. A. Bousaidi},
title = {On the eta invariant, stable positive scalar curvature, and higher $\hat A$-genera},
journal = {Lobachevskii journal of mathematics},
pages = {3--18},
publisher = {mathdoc},
volume = {8},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_2001_8_a0/}
}
M. A. Bousaidi. On the eta invariant, stable positive scalar curvature, and higher $\hat A$-genera. Lobachevskii journal of mathematics, Tome 8 (2001), pp. 3-18. http://geodesic.mathdoc.fr/item/LJM_2001_8_a0/