Group structure in finite coverings of compact solenoidal groups
Lobachevskii journal of mathematics, Tome 6 (2000), pp. 39-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p\colon X\to G$ be an $n$-fold covering of a compact solenoidal group $G$ by a connected topological space $X$. We prove that there exists a group structure in $X$ turning $p$ into a homomorphism between compact abelian groups.
@article{LJM_2000_6_a3,
     author = {S. A. Grigoryan and R. N. Gumerov and A. V. Kazantsev},
     title = {Group structure in finite coverings of compact solenoidal groups},
     journal = {Lobachevskii journal of mathematics},
     pages = {39--46},
     publisher = {mathdoc},
     volume = {6},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2000_6_a3/}
}
TY  - JOUR
AU  - S. A. Grigoryan
AU  - R. N. Gumerov
AU  - A. V. Kazantsev
TI  - Group structure in finite coverings of compact solenoidal groups
JO  - Lobachevskii journal of mathematics
PY  - 2000
SP  - 39
EP  - 46
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2000_6_a3/
LA  - en
ID  - LJM_2000_6_a3
ER  - 
%0 Journal Article
%A S. A. Grigoryan
%A R. N. Gumerov
%A A. V. Kazantsev
%T Group structure in finite coverings of compact solenoidal groups
%J Lobachevskii journal of mathematics
%D 2000
%P 39-46
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2000_6_a3/
%G en
%F LJM_2000_6_a3
S. A. Grigoryan; R. N. Gumerov; A. V. Kazantsev. Group structure in finite coverings of compact solenoidal groups. Lobachevskii journal of mathematics, Tome 6 (2000), pp. 39-46. http://geodesic.mathdoc.fr/item/LJM_2000_6_a3/