Point derivations on algebraic extension of Banach algebra
Lobachevskii journal of mathematics, Tome 6 (2000), pp. 33-37
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that a point $y_0$ in the carrier space of algebraic extension $B$ of commutative Banach algebra $A$ is a branch point if and only if there exists a local point derivation on $B$ at $y_0$, whose kernel contains $A$.
@article{LJM_2000_6_a2,
author = {B. T. Batikyan},
title = {Point derivations on algebraic extension of {Banach} algebra},
journal = {Lobachevskii journal of mathematics},
pages = {33--37},
year = {2000},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_2000_6_a2/}
}
B. T. Batikyan. Point derivations on algebraic extension of Banach algebra. Lobachevskii journal of mathematics, Tome 6 (2000), pp. 33-37. http://geodesic.mathdoc.fr/item/LJM_2000_6_a2/