Point derivations on algebraic extension of Banach algebra
Lobachevskii journal of mathematics, Tome 6 (2000), pp. 33-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that a point $y_0$ in the carrier space of algebraic extension $B$ of commutative Banach algebra $A$ is a branch point if and only if there exists a local point derivation on $B$ at $y_0$, whose kernel contains $A$.
@article{LJM_2000_6_a2,
     author = {B. T. Batikyan},
     title = {Point derivations on algebraic extension of {Banach} algebra},
     journal = {Lobachevskii journal of mathematics},
     pages = {33--37},
     year = {2000},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2000_6_a2/}
}
TY  - JOUR
AU  - B. T. Batikyan
TI  - Point derivations on algebraic extension of Banach algebra
JO  - Lobachevskii journal of mathematics
PY  - 2000
SP  - 33
EP  - 37
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/LJM_2000_6_a2/
LA  - en
ID  - LJM_2000_6_a2
ER  - 
%0 Journal Article
%A B. T. Batikyan
%T Point derivations on algebraic extension of Banach algebra
%J Lobachevskii journal of mathematics
%D 2000
%P 33-37
%V 6
%U http://geodesic.mathdoc.fr/item/LJM_2000_6_a2/
%G en
%F LJM_2000_6_a2
B. T. Batikyan. Point derivations on algebraic extension of Banach algebra. Lobachevskii journal of mathematics, Tome 6 (2000), pp. 33-37. http://geodesic.mathdoc.fr/item/LJM_2000_6_a2/