Sufficient conditions for elliptic problem of optimal control in~$\mathbb R^N$ in Orlicz Sobolev space
Lobachevskii journal of mathematics, Tome 6 (2000), pp. 19-32
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider here a problem for which we seek the local minimum in Orlicz Sobolev spaces $(W_1^0 L_M^*(\Omega),\|.\|_M)$ for the Gâteaux functional $J(f)\equiv\displaystyle\int_\Omega v(x,u,f)\,dx$, where $u$ is the solution of Dirichlet problem with
Laplacian operator associated to $f$ and $\|.\|_M$ is the Orlicz norm. Note that, under the rapid growth conditions on $v$, the (G.f) $J$ is not necesseraly Frechet differentiable in $(W^1_0L_M^*(\Omega),\|.\|_M)$. In this note, using a recent extension of Frechet Differentiability, (see [2]) ,we prove that, under the rapid growth conditons on $v$ the (G.f) is
differentiable for the new notion. Thus we can give sufficient conditions for local minimum.
@article{LJM_2000_6_a1,
author = {A. Addou and S. Lahrech},
title = {Sufficient conditions for elliptic problem of optimal control in~$\mathbb R^N$ in {Orlicz} {Sobolev} space},
journal = {Lobachevskii journal of mathematics},
pages = {19--32},
publisher = {mathdoc},
volume = {6},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_2000_6_a1/}
}
TY - JOUR AU - A. Addou AU - S. Lahrech TI - Sufficient conditions for elliptic problem of optimal control in~$\mathbb R^N$ in Orlicz Sobolev space JO - Lobachevskii journal of mathematics PY - 2000 SP - 19 EP - 32 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2000_6_a1/ LA - en ID - LJM_2000_6_a1 ER -
A. Addou; S. Lahrech. Sufficient conditions for elliptic problem of optimal control in~$\mathbb R^N$ in Orlicz Sobolev space. Lobachevskii journal of mathematics, Tome 6 (2000), pp. 19-32. http://geodesic.mathdoc.fr/item/LJM_2000_6_a1/