Sufficient conditions for elliptic problem of optimal control in~$\mathbb R^2$
Lobachevskii journal of mathematics, Tome 6 (2000), pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that when we look for sufficient conditions of local extremum for Gâteaux functionals (G.f) associated to Dirichlet problem of second order in $\mathbb R^2$, the (G.f) is not necesseraly Frechet differentiable. In this note, using a recent extension of Frechet Differentiability, (see [5]), we obtain that the (G.f) is differentiable with respect to the new notion. Thus we can give sufficient conditions for obtaining local minimum.
@article{LJM_2000_6_a0,
     author = {A. Addou and S. Lahrech},
     title = {Sufficient conditions for elliptic problem of optimal control in~$\mathbb R^2$},
     journal = {Lobachevskii journal of mathematics},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {6},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2000_6_a0/}
}
TY  - JOUR
AU  - A. Addou
AU  - S. Lahrech
TI  - Sufficient conditions for elliptic problem of optimal control in~$\mathbb R^2$
JO  - Lobachevskii journal of mathematics
PY  - 2000
SP  - 3
EP  - 17
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2000_6_a0/
LA  - en
ID  - LJM_2000_6_a0
ER  - 
%0 Journal Article
%A A. Addou
%A S. Lahrech
%T Sufficient conditions for elliptic problem of optimal control in~$\mathbb R^2$
%J Lobachevskii journal of mathematics
%D 2000
%P 3-17
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2000_6_a0/
%G en
%F LJM_2000_6_a0
A. Addou; S. Lahrech. Sufficient conditions for elliptic problem of optimal control in~$\mathbb R^2$. Lobachevskii journal of mathematics, Tome 6 (2000), pp. 3-17. http://geodesic.mathdoc.fr/item/LJM_2000_6_a0/