Cohomology of unitary and Sympletic groups
Lobachevskii journal of mathematics, Tome 5 (1999), pp. 57-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the cohomology rings of $U(n)$ and $Sp(n)$ and of their Stiefel varieties by using the Serre spectral sequence. This approach is much simpler than the usual method, that of using the cell structures. The argument here also shows that the cohomology of $U(n)$ is built from those of $U(n-1)$ and $S^{n-1}$ through a fiber bundle; a similar result holds for $Sp(n)$.
@article{LJM_1999_5_a3,
     author = {D. Yau},
     title = {Cohomology of unitary and {Sympletic} groups},
     journal = {Lobachevskii journal of mathematics},
     pages = {57--60},
     publisher = {mathdoc},
     volume = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_1999_5_a3/}
}
TY  - JOUR
AU  - D. Yau
TI  - Cohomology of unitary and Sympletic groups
JO  - Lobachevskii journal of mathematics
PY  - 1999
SP  - 57
EP  - 60
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_1999_5_a3/
LA  - en
ID  - LJM_1999_5_a3
ER  - 
%0 Journal Article
%A D. Yau
%T Cohomology of unitary and Sympletic groups
%J Lobachevskii journal of mathematics
%D 1999
%P 57-60
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_1999_5_a3/
%G en
%F LJM_1999_5_a3
D. Yau. Cohomology of unitary and Sympletic groups. Lobachevskii journal of mathematics, Tome 5 (1999), pp. 57-60. http://geodesic.mathdoc.fr/item/LJM_1999_5_a3/