On formal series and infinite products over Lie algebras
Lobachevskii journal of mathematics, Tome 4 (1999), pp. 207-218
Cet article a éte moissonné depuis la source Math-Net.Ru
A brief survey of new methods for the study of nonstandard associative envelopes of Lie algebras is presented. Various extensions of the universal enveloping algebra $U\mathfrak g$ are considered, where $\mathfrak g$ is a symmetrizable Kac–Moody algebra. An elementary proof is given for describing the “extremal projector” over $\mathfrak g$ as an infinite product over $U\mathfrak g$. Certain applications to the theory of $\mathfrak g$-modules are discussed.
Keywords:
Kac–Moody algebras, enveloping algebras, quantum algebras
Mots-clés : Lie algebras, modules.
Mots-clés : Lie algebras, modules.
@article{LJM_1999_4_a9,
author = {D. P. Zhelobenko},
title = {On formal series and infinite products {over~Lie} algebras},
journal = {Lobachevskii journal of mathematics},
pages = {207--218},
year = {1999},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_1999_4_a9/}
}
D. P. Zhelobenko. On formal series and infinite products over Lie algebras. Lobachevskii journal of mathematics, Tome 4 (1999), pp. 207-218. http://geodesic.mathdoc.fr/item/LJM_1999_4_a9/