On formal series and infinite products over~Lie algebras
Lobachevskii journal of mathematics, Tome 4 (1999), pp. 207-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

A brief survey of new methods for the study of nonstandard associative envelopes of Lie algebras is presented. Various extensions of the universal enveloping algebra $U\mathfrak g$ are considered, where $\mathfrak g$ is a symmetrizable Kac–Moody algebra. An elementary proof is given for describing the “extremal projector” over $\mathfrak g$ as an infinite product over $U\mathfrak g$. Certain applications to the theory of $\mathfrak g$-modules are discussed.
Keywords: Kac–Moody algebras, enveloping algebras, quantum algebras
Mots-clés : Lie algebras, modules.
@article{LJM_1999_4_a9,
     author = {D. P. Zhelobenko},
     title = {On formal series and infinite products {over~Lie} algebras},
     journal = {Lobachevskii journal of mathematics},
     pages = {207--218},
     publisher = {mathdoc},
     volume = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_1999_4_a9/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - On formal series and infinite products over~Lie algebras
JO  - Lobachevskii journal of mathematics
PY  - 1999
SP  - 207
EP  - 218
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_1999_4_a9/
LA  - en
ID  - LJM_1999_4_a9
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T On formal series and infinite products over~Lie algebras
%J Lobachevskii journal of mathematics
%D 1999
%P 207-218
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_1999_4_a9/
%G en
%F LJM_1999_4_a9
D. P. Zhelobenko. On formal series and infinite products over~Lie algebras. Lobachevskii journal of mathematics, Tome 4 (1999), pp. 207-218. http://geodesic.mathdoc.fr/item/LJM_1999_4_a9/