Weyl manifold and quantized connection
Lobachevskii journal of mathematics, Tome 4 (1999), pp. 177-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is two folds. First we give a brief review of Weyl manifold and Deformation quantization. Poincaré–Cartan class is introduced and complete classification of Weyl manifolds is given. Second, Quantized connection or twisted exterior derivative is discussed. Degree operator field is introduced and plays an important role. Classical coordinate is constructed by means of the degree operator field. Quantized connection is then defined on Weyl manifold. In terms of classical coordinates the quantized connection is shown to be the same as Fedosov connection. Finally, we show the Poincaré–Cartan class is equal to the deRham cohomology class of the curvature of Fedosov connection.
Keywords: Weyl manifold
Mots-clés : Deformation quantization, Quantized connection.
@article{LJM_1999_4_a8,
     author = {A. Yoshioka},
     title = {Weyl manifold and quantized connection},
     journal = {Lobachevskii journal of mathematics},
     pages = {177--206},
     publisher = {mathdoc},
     volume = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_1999_4_a8/}
}
TY  - JOUR
AU  - A. Yoshioka
TI  - Weyl manifold and quantized connection
JO  - Lobachevskii journal of mathematics
PY  - 1999
SP  - 177
EP  - 206
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_1999_4_a8/
LA  - en
ID  - LJM_1999_4_a8
ER  - 
%0 Journal Article
%A A. Yoshioka
%T Weyl manifold and quantized connection
%J Lobachevskii journal of mathematics
%D 1999
%P 177-206
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_1999_4_a8/
%G en
%F LJM_1999_4_a8
A. Yoshioka. Weyl manifold and quantized connection. Lobachevskii journal of mathematics, Tome 4 (1999), pp. 177-206. http://geodesic.mathdoc.fr/item/LJM_1999_4_a8/