on contact equivalence of holomorphic Monge--Amp\`ere equations
Lobachevskii journal of mathematics, Tome 4 (1999), pp. 163-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with holomorphic Monge–Ampère equations on 5-dimensional complex contact manifolds, i.e. Monge–Ampère equations with two complex independent variables. If a Monge–Ampère equation is in general position,then a complex affine connection can be put in correspondence to this equation in natural manner. This correspondence allows to formulate and prove a number of results on contact equivalence of Monge–Ampère equations using suitable properties of affine connections.
Keywords: Monge–Ampére equation, characteristic bundle, characteristic connection, contact equivalence, contact symmetry, homogeneous equation.
@article{LJM_1999_4_a7,
     author = {D. V. Tunitsky},
     title = {on contact equivalence of holomorphic {Monge--Amp\`ere} equations},
     journal = {Lobachevskii journal of mathematics},
     pages = {163--175},
     publisher = {mathdoc},
     volume = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_1999_4_a7/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - on contact equivalence of holomorphic Monge--Amp\`ere equations
JO  - Lobachevskii journal of mathematics
PY  - 1999
SP  - 163
EP  - 175
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_1999_4_a7/
LA  - en
ID  - LJM_1999_4_a7
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T on contact equivalence of holomorphic Monge--Amp\`ere equations
%J Lobachevskii journal of mathematics
%D 1999
%P 163-175
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_1999_4_a7/
%G en
%F LJM_1999_4_a7
D. V. Tunitsky. on contact equivalence of holomorphic Monge--Amp\`ere equations. Lobachevskii journal of mathematics, Tome 4 (1999), pp. 163-175. http://geodesic.mathdoc.fr/item/LJM_1999_4_a7/