on contact equivalence of holomorphic Monge–Ampère equations
Lobachevskii journal of mathematics, Tome 4 (1999), pp. 163-175
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper deals with holomorphic Monge–Ampère equations on 5-dimensional complex contact manifolds, i.e. Monge–Ampère equations with two complex independent variables. If a Monge–Ampère equation is in general position,then a complex affine connection can be put in correspondence to this equation in natural manner. This correspondence allows to formulate and prove a number of results on contact equivalence of Monge–Ampère equations using suitable properties of affine connections.
Keywords:
characteristic bundle, characteristic connection, contact equivalence, contact symmetry, homogeneous equation.
Mots-clés : Monge–Ampére equation
Mots-clés : Monge–Ampére equation
@article{LJM_1999_4_a7,
author = {D. V. Tunitsky},
title = {on contact equivalence of holomorphic {Monge{\textendash}Amp\`ere} equations},
journal = {Lobachevskii journal of mathematics},
pages = {163--175},
year = {1999},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_1999_4_a7/}
}
D. V. Tunitsky. on contact equivalence of holomorphic Monge–Ampère equations. Lobachevskii journal of mathematics, Tome 4 (1999), pp. 163-175. http://geodesic.mathdoc.fr/item/LJM_1999_4_a7/