Contact geometry of hyperbolic Monge--Amp\`ere equations
Lobachevskii journal of mathematics, Tome 4 (1999), pp. 109-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the geometry of hyperbolic Monge–Ampère equations with large symmetry algebras. We classify all hyperbolic Monge–Ampère equations whose Lie algebra of contact symmetries is transitive. We also give the explicit construction for Cartan connections associated with generic hyperbolic Monge–Ampère equations and find those equations which correspond to connections with vanishing curvature tensor.
Keywords: characteristic distribution, symmetries, homogeneous spaces.
Mots-clés : Contact transformations, Cartan connections
@article{LJM_1999_4_a6,
     author = {O. P. Tchij},
     title = {Contact geometry of hyperbolic {Monge--Amp\`ere} equations},
     journal = {Lobachevskii journal of mathematics},
     pages = {109--162},
     publisher = {mathdoc},
     volume = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_1999_4_a6/}
}
TY  - JOUR
AU  - O. P. Tchij
TI  - Contact geometry of hyperbolic Monge--Amp\`ere equations
JO  - Lobachevskii journal of mathematics
PY  - 1999
SP  - 109
EP  - 162
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_1999_4_a6/
LA  - en
ID  - LJM_1999_4_a6
ER  - 
%0 Journal Article
%A O. P. Tchij
%T Contact geometry of hyperbolic Monge--Amp\`ere equations
%J Lobachevskii journal of mathematics
%D 1999
%P 109-162
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_1999_4_a6/
%G en
%F LJM_1999_4_a6
O. P. Tchij. Contact geometry of hyperbolic Monge--Amp\`ere equations. Lobachevskii journal of mathematics, Tome 4 (1999), pp. 109-162. http://geodesic.mathdoc.fr/item/LJM_1999_4_a6/