Invariant projectively flat connections and its applications
Lobachevskii journal of mathematics, Tome 4 (1999), pp. 99-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study invariant projectively flat affine connections and invariant dualistic structures of constant curvature. We first relate the existence of invariant projectively flat affine connections to that of certain affine representation of Lie algebras (Theorem 1). Using such affine representations we give a correspondence between semisimple symmetric spaces with invariant projectively flat affine connections and central-simple Jordan algebras (Theorem 2). As an application we prove that invariant dualistic structures of constant curvature come from certain invariant Hessian structures (Theorem 3).
@article{LJM_1999_4_a5,
     author = {A. Mizuhara and H. Shima},
     title = {Invariant projectively flat connections and its applications},
     journal = {Lobachevskii journal of mathematics},
     pages = {99--107},
     publisher = {mathdoc},
     volume = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_1999_4_a5/}
}
TY  - JOUR
AU  - A. Mizuhara
AU  - H. Shima
TI  - Invariant projectively flat connections and its applications
JO  - Lobachevskii journal of mathematics
PY  - 1999
SP  - 99
EP  - 107
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_1999_4_a5/
LA  - en
ID  - LJM_1999_4_a5
ER  - 
%0 Journal Article
%A A. Mizuhara
%A H. Shima
%T Invariant projectively flat connections and its applications
%J Lobachevskii journal of mathematics
%D 1999
%P 99-107
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_1999_4_a5/
%G en
%F LJM_1999_4_a5
A. Mizuhara; H. Shima. Invariant projectively flat connections and its applications. Lobachevskii journal of mathematics, Tome 4 (1999), pp. 99-107. http://geodesic.mathdoc.fr/item/LJM_1999_4_a5/