Homogeneous Einstein metrics on flag manifolds
Lobachevskii journal of mathematics, Tome 4 (1999), pp. 71-87
Cet article a éte moissonné depuis la source Math-Net.Ru
It is known that a flag manifold admits a Käahler–Einstein metric. We investigate $K$-invariant Einstein metrics on a flag manifold $M=K/T$ which is not Kähler–Einstein. This problem has been studied by Alekseevsky and Arvanitoyeorgos in case of generalized flag manifolds. We give an explicit expression of Ricci tensor of a flag manifold $K/T$ for the case of a classical simple Lie group and we present more new $K$-invariant Einstein metrics on a flag manifold $K/T$. We compute a Gröbner basis for a system of polynomials of multi-variables and show the existence of positive solutions for a system of algebraic equations to prove the existence of $K$-invariant Einstein metrics.
@article{LJM_1999_4_a3,
author = {Yu. Sakane},
title = {Homogeneous {Einstein} metrics on flag manifolds},
journal = {Lobachevskii journal of mathematics},
pages = {71--87},
year = {1999},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_1999_4_a3/}
}
Yu. Sakane. Homogeneous Einstein metrics on flag manifolds. Lobachevskii journal of mathematics, Tome 4 (1999), pp. 71-87. http://geodesic.mathdoc.fr/item/LJM_1999_4_a3/