Introduction to noncommutative differential geometry
Lobachevskii journal of mathematics, Tome 4 (1999), pp. 13-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is getting a major understanding that the function ring of the underlying space of the quantum world is not a commutative ring, and the underlying space itself is not even a point set. In spite of this, the underlying space of the quantum world should be a continuum, on which one can make a calculus. We hope we can see such mathematics in the coming century. This article is a survey of such effort or trial to make such calculus. However, this article does not give a bird-eye-view of the noncommutative world but this gives several toys which come from the noncommutative world.
@article{LJM_1999_4_a1,
     author = {H. Omori},
     title = {Introduction to noncommutative differential geometry},
     journal = {Lobachevskii journal of mathematics},
     pages = {13--46},
     publisher = {mathdoc},
     volume = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_1999_4_a1/}
}
TY  - JOUR
AU  - H. Omori
TI  - Introduction to noncommutative differential geometry
JO  - Lobachevskii journal of mathematics
PY  - 1999
SP  - 13
EP  - 46
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_1999_4_a1/
LA  - en
ID  - LJM_1999_4_a1
ER  - 
%0 Journal Article
%A H. Omori
%T Introduction to noncommutative differential geometry
%J Lobachevskii journal of mathematics
%D 1999
%P 13-46
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_1999_4_a1/
%G en
%F LJM_1999_4_a1
H. Omori. Introduction to noncommutative differential geometry. Lobachevskii journal of mathematics, Tome 4 (1999), pp. 13-46. http://geodesic.mathdoc.fr/item/LJM_1999_4_a1/