On decomposable Monge--Amp\`ere equations
Lobachevskii journal of mathematics, Tome 3 (1999), pp. 185-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce a remarkable class of Monge–Ampère systems on contact manifolds of arbitrary odd dimensions which we call decomposable Monge–Ampère systems. We show that we can associate to a decomposable Monge–Ampère system the characteristic systems enjoying nice properties, and that most of the results in the case of two independent variable as discussed in [M2] can be naturally generalized to this class of decomposable Monge–Ampère systems.
@article{LJM_1999_3_a8,
     author = {Y. Machida and T. Morimoto},
     title = {On decomposable {Monge--Amp\`ere} equations},
     journal = {Lobachevskii journal of mathematics},
     pages = {185--196},
     publisher = {mathdoc},
     volume = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_1999_3_a8/}
}
TY  - JOUR
AU  - Y. Machida
AU  - T. Morimoto
TI  - On decomposable Monge--Amp\`ere equations
JO  - Lobachevskii journal of mathematics
PY  - 1999
SP  - 185
EP  - 196
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_1999_3_a8/
LA  - en
ID  - LJM_1999_3_a8
ER  - 
%0 Journal Article
%A Y. Machida
%A T. Morimoto
%T On decomposable Monge--Amp\`ere equations
%J Lobachevskii journal of mathematics
%D 1999
%P 185-196
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_1999_3_a8/
%G en
%F LJM_1999_3_a8
Y. Machida; T. Morimoto. On decomposable Monge--Amp\`ere equations. Lobachevskii journal of mathematics, Tome 3 (1999), pp. 185-196. http://geodesic.mathdoc.fr/item/LJM_1999_3_a8/