Developable hypersurfaces and homogeneous spaces in a real projective space
Lobachevskii journal of mathematics, Tome 3 (1999), pp. 113-125
We present new examples of non-singular developable hypersurfaces, which are algebraic and homogeneous, in real projective spaces. Moreover we give a characterization of compact homogeneous developable hypersurfaces, using the theory of isoparametric hypersurfaces.
Keywords:
projective duality, Cayley's octonians, Veronese embedding, Jordan algebra, Severi variety, isoparametric hypersurface.
Mots-clés : Monge–Ampère foliation
Mots-clés : Monge–Ampère foliation
@article{LJM_1999_3_a5,
author = {G. Ishikawa},
title = {Developable hypersurfaces and homogeneous spaces in a~real projective space},
journal = {Lobachevskii journal of mathematics},
pages = {113--125},
year = {1999},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_1999_3_a5/}
}
G. Ishikawa. Developable hypersurfaces and homogeneous spaces in a real projective space. Lobachevskii journal of mathematics, Tome 3 (1999), pp. 113-125. http://geodesic.mathdoc.fr/item/LJM_1999_3_a5/