Developable hypersurfaces and homogeneous spaces in a real projective space
Lobachevskii journal of mathematics, Tome 3 (1999), pp. 113-125
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present new examples of non-singular developable hypersurfaces, which are algebraic and homogeneous, in real projective spaces. Moreover we give a characterization of compact homogeneous developable hypersurfaces, using the theory of isoparametric hypersurfaces.
Keywords: projective duality, Cayley's octonians, Veronese embedding, Jordan algebra, Severi variety, isoparametric hypersurface.
Mots-clés : Monge–Ampère foliation
@article{LJM_1999_3_a5,
     author = {G. Ishikawa},
     title = {Developable hypersurfaces and homogeneous spaces in a~real projective space},
     journal = {Lobachevskii journal of mathematics},
     pages = {113--125},
     year = {1999},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_1999_3_a5/}
}
TY  - JOUR
AU  - G. Ishikawa
TI  - Developable hypersurfaces and homogeneous spaces in a real projective space
JO  - Lobachevskii journal of mathematics
PY  - 1999
SP  - 113
EP  - 125
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/LJM_1999_3_a5/
LA  - en
ID  - LJM_1999_3_a5
ER  - 
%0 Journal Article
%A G. Ishikawa
%T Developable hypersurfaces and homogeneous spaces in a real projective space
%J Lobachevskii journal of mathematics
%D 1999
%P 113-125
%V 3
%U http://geodesic.mathdoc.fr/item/LJM_1999_3_a5/
%G en
%F LJM_1999_3_a5
G. Ishikawa. Developable hypersurfaces and homogeneous spaces in a real projective space. Lobachevskii journal of mathematics, Tome 3 (1999), pp. 113-125. http://geodesic.mathdoc.fr/item/LJM_1999_3_a5/