Intermediate inversion formulas in integral geometry
Lobachevskii journal of mathematics, Tome 3 (1999), pp. 97-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the following “intermediate” problem of integral geometry: to reconstruct integrals of a function over $p$-dimensional planes in $\mathbb R^n$ starting from its integrals over $k$-planes, where $p$. Some generalizations are also presented.
Keywords: integral geometry, intermediate problems, differential forms, intermediate differential forms.
Mots-clés : inversion formulas
@article{LJM_1999_3_a4,
     author = {M. M. Graev},
     title = {Intermediate inversion formulas in integral geometry},
     journal = {Lobachevskii journal of mathematics},
     pages = {97--111},
     publisher = {mathdoc},
     volume = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_1999_3_a4/}
}
TY  - JOUR
AU  - M. M. Graev
TI  - Intermediate inversion formulas in integral geometry
JO  - Lobachevskii journal of mathematics
PY  - 1999
SP  - 97
EP  - 111
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_1999_3_a4/
LA  - en
ID  - LJM_1999_3_a4
ER  - 
%0 Journal Article
%A M. M. Graev
%T Intermediate inversion formulas in integral geometry
%J Lobachevskii journal of mathematics
%D 1999
%P 97-111
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_1999_3_a4/
%G en
%F LJM_1999_3_a4
M. M. Graev. Intermediate inversion formulas in integral geometry. Lobachevskii journal of mathematics, Tome 3 (1999), pp. 97-111. http://geodesic.mathdoc.fr/item/LJM_1999_3_a4/