On geometrical properties of free boundaries in the Hele–Shaw flows moving boundary problem
Lobachevskii journal of mathematics, Tome 1 (1998), pp. 3-12
Cet article a éte moissonné depuis la source Math-Net.Ru
In the article we discuss the geometrical properties of the moving boundary for two basic cases in the plain problem of the Hele–Shaw flows: for the inner problem for the flows in a bounded simply connected domain; and for the exterior problem for dynamics of an aerofoil connected with the flows in the exterior part of a bounded simply connected domain. We prove the invariance of the properties of starlikeness in case of the inner problem of pumping; of convexity in case of the exterior problem of tightening of an aerofoil. We also adduce some examples for the problem of tightening where the corresponding properties of starlikeness, convexity and close-to-convexity are not inherited by the moving boundary.
@article{LJM_1998_1_a0,
author = {Yu. E. Hohlov and D. V. Prokhorov and A. Yu. Vasil'ev},
title = {On geometrical properties of free boundaries in the {Hele{\textendash}Shaw} flows moving boundary problem},
journal = {Lobachevskii journal of mathematics},
pages = {3--12},
year = {1998},
volume = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_1998_1_a0/}
}
TY - JOUR AU - Yu. E. Hohlov AU - D. V. Prokhorov AU - A. Yu. Vasil'ev TI - On geometrical properties of free boundaries in the Hele–Shaw flows moving boundary problem JO - Lobachevskii journal of mathematics PY - 1998 SP - 3 EP - 12 VL - 1 UR - http://geodesic.mathdoc.fr/item/LJM_1998_1_a0/ LA - en ID - LJM_1998_1_a0 ER -
%0 Journal Article %A Yu. E. Hohlov %A D. V. Prokhorov %A A. Yu. Vasil'ev %T On geometrical properties of free boundaries in the Hele–Shaw flows moving boundary problem %J Lobachevskii journal of mathematics %D 1998 %P 3-12 %V 1 %U http://geodesic.mathdoc.fr/item/LJM_1998_1_a0/ %G en %F LJM_1998_1_a0
Yu. E. Hohlov; D. V. Prokhorov; A. Yu. Vasil'ev. On geometrical properties of free boundaries in the Hele–Shaw flows moving boundary problem. Lobachevskii journal of mathematics, Tome 1 (1998), pp. 3-12. http://geodesic.mathdoc.fr/item/LJM_1998_1_a0/