Fuzzy empirical distribution function: Properties and application
Kybernetika, Tome 49 (2013) no. 6, pp. 962-982 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The concepts of cumulative distribution function and empirical distribution function are investigated for fuzzy random variables. Some limit theorems related to such functions are established. As an application of the obtained results, a method of handling fuzziness upon the usual method of Kolmogorov-Smirnov one-sample test is proposed. We transact the $\alpha$-level set of imprecise observations in order to extend the usual method of Kolmogorov-Smirnov one-sample test. To do this, the concepts of fuzzy Kolmogorov-Smirnov one-sample test statistic and p-value are extended to the fuzzy Kolmogorov-Smirnov one-sample test statistic and fuzzy p-value, respectively. Finally, a preference degree between two fuzzy numbers is employed for comparing the observed fuzzy p-value and the given fuzzy significance level, in order to accept or reject the null hypothesis of interest. Some numerical examples are provided to clarify the discussions in this paper.
The concepts of cumulative distribution function and empirical distribution function are investigated for fuzzy random variables. Some limit theorems related to such functions are established. As an application of the obtained results, a method of handling fuzziness upon the usual method of Kolmogorov-Smirnov one-sample test is proposed. We transact the $\alpha$-level set of imprecise observations in order to extend the usual method of Kolmogorov-Smirnov one-sample test. To do this, the concepts of fuzzy Kolmogorov-Smirnov one-sample test statistic and p-value are extended to the fuzzy Kolmogorov-Smirnov one-sample test statistic and fuzzy p-value, respectively. Finally, a preference degree between two fuzzy numbers is employed for comparing the observed fuzzy p-value and the given fuzzy significance level, in order to accept or reject the null hypothesis of interest. Some numerical examples are provided to clarify the discussions in this paper.
Classification : 62A10, 62G10, 62G86, 93C42, 93C57, 93E12
Keywords: fuzzy cumulative distribution function; fuzzy empirical distribution function; Kolmogorov–Smirnov test; fuzzy p-value; convergence with probability one; degree of accept; degree of reject; Glivenko–Cantelli theorem
@article{KYB_2013_49_6_a8,
     author = {Hesamian, Gholamreza and Taheri, S. M.},
     title = {Fuzzy empirical distribution function: {Properties} and application},
     journal = {Kybernetika},
     pages = {962--982},
     year = {2013},
     volume = {49},
     number = {6},
     mrnumber = {3182651},
     zbl = {1284.93240},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a8/}
}
TY  - JOUR
AU  - Hesamian, Gholamreza
AU  - Taheri, S. M.
TI  - Fuzzy empirical distribution function: Properties and application
JO  - Kybernetika
PY  - 2013
SP  - 962
EP  - 982
VL  - 49
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a8/
LA  - en
ID  - KYB_2013_49_6_a8
ER  - 
%0 Journal Article
%A Hesamian, Gholamreza
%A Taheri, S. M.
%T Fuzzy empirical distribution function: Properties and application
%J Kybernetika
%D 2013
%P 962-982
%V 49
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a8/
%G en
%F KYB_2013_49_6_a8
Hesamian, Gholamreza; Taheri, S. M. Fuzzy empirical distribution function: Properties and application. Kybernetika, Tome 49 (2013) no. 6, pp. 962-982. http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a8/

[1] Arefi, M., Viertl, R., Taheri, S. M.: Fuzzy density estimation. Metrika 75 (2012), 5-22. | DOI | MR | Zbl

[2] Bzowski, A., Urbanski, M. K.: Convergence, strong law of large numbers, and measurement theory in the language of fuzzy variables. | arXiv

[3] Denoeux, T., Masson, M. H., Herbert, P. H.: Non-parametric rank-based statistics and significance tests for fuzzy data. Fuzzy Sets and Systems 153 (2005), 1-28. | MR

[4] Dubois, D., Prade, H.: Operation on fuzzy numbers. Internat. J. System Sci. 9 (1978), 613-626. | DOI | MR

[5] Dubois, D., Prade, H.: Ranking of fuzzy numbers in the setting of possibility theory. Inform. Sci. 30 (1983), 183-224. | DOI | MR

[6] Filzmoser, P., Viertl, R.: Testing hypotheses with fuzzy data: the fuzzy p-value. Metrika 59 (2004), 21-29. | DOI | MR | Zbl

[7] Gibbons, J. D., Chakraborti, S.: Non-parametric Statistical Inference. Fourth edition. Marcel Dekker, New York 2003. | MR

[8] Gil, M. A.: Fuzzy random variables: Development and state of the art. In: Mathematics of Fuzzy Systems, Proc. Linz Seminar on Fuzzy Set Theory. Linz 2004, pp. 11-15.

[9] Govindarajulu, Z.: Non-parametric Inference. Hackensack, World Scientific 2007.

[10] Grzegorzewski, P.: Statistical inference about the median from vague data. Control Cybernet. 27 (1998), 447-464. | MR | Zbl

[11] Grzegorzewski, P.: Two-sample median test for vague data. In: Proc. 4th Conf. European Society for Fuzzy Logic and Technology-Eusflat, Barcelona 2005, pp. 621-626.

[12] Grzegorzewski, P.: K-sample median test for vague data. Internat. J. Intelligent Systems 24 (2009), 529-539. | DOI | Zbl

[13] Grzegorzewski, P.: Distribution-free tests for vague data. In: Soft Methodology and Random Information Systems (M. Lopez-Diaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry (eds.), Springer, Heidelberg 2004, pp. 495-502. | MR | Zbl

[14] Grzegorzewski, P.: A bi-robust test for vague data. In: Proc. of the Twelfth International Conference on Information Proc. and Management of Uncertainty in Knowledge-Based Systems, IPMU'08 (L. Magdalena, M. Ojeda-Aciego, J. L. Verdegay, eds.), Torremolinos 2008, pp. 138-144.

[15] Hesamian, G., Taheri, S. M.: Linear rank tests for two-sample fuzzy data: a p-value approach. J. Uncertainty Systems 7 (2013), 129-137.

[16] Holena, M.: Fuzzy hypotheses testing in a framework of fuzzy logic. Fuzzy Sets and Systems 145 (2004), 229-252. | DOI | MR

[17] Hryniewicz, O.: Goodman-Kruskal $\gamma$ measure of dependence for fuzzy ordered categorical data. Comput. Statist. Data Anal. 51 (2006), 323-334. | DOI | MR | Zbl

[18] Hryniewicz, O.: Possibilistic decisions and fuzzy statistical tests. Fuzzy Sets and Systems 157 (2006), 2665-2673. | MR | Zbl

[19] Kahraman, C., Bozdag, C. F., Ruan, D.: Fuzzy sets approaches to statistical parametric and non-parametric tests. Internat. J. Intelligent Systems 19 (2004), 1069-1078. | DOI

[20] Klement, E. P., Puri, M. L., Ralescu, D. A.: Limit theorems for fuzzy random variables. Proc. Roy. Soc. London Ser. A 407 (1986), 171-182. | MR | Zbl

[21] Krätschmer, V.: Probability theory in fuzzy sample spaces. Metrika 60 (2004), 167-189. | DOI | MR | Zbl

[22] Kruse, R., Meyer, K. D.: Statistics with Vague Data. Reidel Publishing Company, Dordrecht 1987. | MR | Zbl

[23] Lee, K. H.: First Course on Fuzzy Theory and Applications. Springer, Heidelberg 2005. | Zbl

[24] Li, S., Ogura, Y.: Strong laws of large numbers for independent fuzzy set-valued random variables. Fuzzy Sets and Systems 157 (2006), 2569-2578. | MR | Zbl

[25] Kvam, P. H., Vidadovic, B.: Non-parametric Statistics with Application to Science and Engineering. J. Wiley, New Jersey 2007.

[26] Mareš, M.: Fuzzy data in statistics. Kybernetika 43 (2007), 491-502. | MR | Zbl

[27] Nguyen, H., Wang, T., Wu, B.: On probabilistic methods in fuzzy theory. Internat. J. Intelligent Systems 19 (2004), 99-109. | DOI | Zbl

[28] Parchami, A., Taheri, S. M., Mashinchi, M.: Fuzzy p-value in testing fuzzy hypotheses with crisp data. Statist. Papers 51 (2010), 209-226. | DOI | MR | Zbl

[29] Parthasarathy, K. R.: Probability Measurs on Metric Space. Academic Press, New York 1967. | MR

[30] Puri, M. L., Ralescu, D. A.: Fuzzy random variables. J. Math. Anal. Appl. 361 (1986), 409-422. | DOI | MR | Zbl

[31] Shapiro, A. F.: Fuzzy random variables. Insurance: Math. and Econom. 44 (2009), 307-314. | MR | Zbl

[32] Taheri, S. M., Hesamian, G.: Goodman-Kruskal measure of association for fuzzy-categorized variables. Kybernetika 47 (2011), 110-122. | MR | Zbl

[33] Taheri, S. M., Hesamian, G.: A generalization of the Wilcoxon signed-rank test and its applications. Statist. Papers 54 (2013), 457-470. | DOI | MR

[34] Viertl, R.: Univariate statistical analysis with fuzzy data. Comput. Statist. Data Anal. 51 (2006), 133-147. | DOI | MR | Zbl

[35] Viertl, R.: Statistical Methods for Fuzzy Data. J. Wiley, Chichester 2011. | MR | Zbl

[36] Wang, X., Kerre, E.: Reasonable properties for the ordering of fuzzy quantities (II). Fuzzy Sets and Systems 118 (2001), 387-405. | MR | Zbl

[37] Wu, H. C.: Statistical hypotheses testing for fuzzy data. Fuzzy Sets and Systems 175 (2005), 30-56. | MR | Zbl

[38] Yoan, Y.: Criteria for evaluating fuzzy ranking methods. Fuzzy Sets and Systems 43 (1991), 139-157. | DOI | MR