Keywords: fuzzy cumulative distribution function; fuzzy empirical distribution function; Kolmogorov–Smirnov test; fuzzy p-value; convergence with probability one; degree of accept; degree of reject; Glivenko–Cantelli theorem
@article{KYB_2013_49_6_a8,
author = {Hesamian, Gholamreza and Taheri, S. M.},
title = {Fuzzy empirical distribution function: {Properties} and application},
journal = {Kybernetika},
pages = {962--982},
year = {2013},
volume = {49},
number = {6},
mrnumber = {3182651},
zbl = {1284.93240},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a8/}
}
Hesamian, Gholamreza; Taheri, S. M. Fuzzy empirical distribution function: Properties and application. Kybernetika, Tome 49 (2013) no. 6, pp. 962-982. http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a8/
[1] Arefi, M., Viertl, R., Taheri, S. M.: Fuzzy density estimation. Metrika 75 (2012), 5-22. | DOI | MR | Zbl
[2] Bzowski, A., Urbanski, M. K.: Convergence, strong law of large numbers, and measurement theory in the language of fuzzy variables. | arXiv
[3] Denoeux, T., Masson, M. H., Herbert, P. H.: Non-parametric rank-based statistics and significance tests for fuzzy data. Fuzzy Sets and Systems 153 (2005), 1-28. | MR
[4] Dubois, D., Prade, H.: Operation on fuzzy numbers. Internat. J. System Sci. 9 (1978), 613-626. | DOI | MR
[5] Dubois, D., Prade, H.: Ranking of fuzzy numbers in the setting of possibility theory. Inform. Sci. 30 (1983), 183-224. | DOI | MR
[6] Filzmoser, P., Viertl, R.: Testing hypotheses with fuzzy data: the fuzzy p-value. Metrika 59 (2004), 21-29. | DOI | MR | Zbl
[7] Gibbons, J. D., Chakraborti, S.: Non-parametric Statistical Inference. Fourth edition. Marcel Dekker, New York 2003. | MR
[8] Gil, M. A.: Fuzzy random variables: Development and state of the art. In: Mathematics of Fuzzy Systems, Proc. Linz Seminar on Fuzzy Set Theory. Linz 2004, pp. 11-15.
[9] Govindarajulu, Z.: Non-parametric Inference. Hackensack, World Scientific 2007.
[10] Grzegorzewski, P.: Statistical inference about the median from vague data. Control Cybernet. 27 (1998), 447-464. | MR | Zbl
[11] Grzegorzewski, P.: Two-sample median test for vague data. In: Proc. 4th Conf. European Society for Fuzzy Logic and Technology-Eusflat, Barcelona 2005, pp. 621-626.
[12] Grzegorzewski, P.: K-sample median test for vague data. Internat. J. Intelligent Systems 24 (2009), 529-539. | DOI | Zbl
[13] Grzegorzewski, P.: Distribution-free tests for vague data. In: Soft Methodology and Random Information Systems (M. Lopez-Diaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry (eds.), Springer, Heidelberg 2004, pp. 495-502. | MR | Zbl
[14] Grzegorzewski, P.: A bi-robust test for vague data. In: Proc. of the Twelfth International Conference on Information Proc. and Management of Uncertainty in Knowledge-Based Systems, IPMU'08 (L. Magdalena, M. Ojeda-Aciego, J. L. Verdegay, eds.), Torremolinos 2008, pp. 138-144.
[15] Hesamian, G., Taheri, S. M.: Linear rank tests for two-sample fuzzy data: a p-value approach. J. Uncertainty Systems 7 (2013), 129-137.
[16] Holena, M.: Fuzzy hypotheses testing in a framework of fuzzy logic. Fuzzy Sets and Systems 145 (2004), 229-252. | DOI | MR
[17] Hryniewicz, O.: Goodman-Kruskal $\gamma$ measure of dependence for fuzzy ordered categorical data. Comput. Statist. Data Anal. 51 (2006), 323-334. | DOI | MR | Zbl
[18] Hryniewicz, O.: Possibilistic decisions and fuzzy statistical tests. Fuzzy Sets and Systems 157 (2006), 2665-2673. | MR | Zbl
[19] Kahraman, C., Bozdag, C. F., Ruan, D.: Fuzzy sets approaches to statistical parametric and non-parametric tests. Internat. J. Intelligent Systems 19 (2004), 1069-1078. | DOI
[20] Klement, E. P., Puri, M. L., Ralescu, D. A.: Limit theorems for fuzzy random variables. Proc. Roy. Soc. London Ser. A 407 (1986), 171-182. | MR | Zbl
[21] Krätschmer, V.: Probability theory in fuzzy sample spaces. Metrika 60 (2004), 167-189. | DOI | MR | Zbl
[22] Kruse, R., Meyer, K. D.: Statistics with Vague Data. Reidel Publishing Company, Dordrecht 1987. | MR | Zbl
[23] Lee, K. H.: First Course on Fuzzy Theory and Applications. Springer, Heidelberg 2005. | Zbl
[24] Li, S., Ogura, Y.: Strong laws of large numbers for independent fuzzy set-valued random variables. Fuzzy Sets and Systems 157 (2006), 2569-2578. | MR | Zbl
[25] Kvam, P. H., Vidadovic, B.: Non-parametric Statistics with Application to Science and Engineering. J. Wiley, New Jersey 2007.
[26] Mareš, M.: Fuzzy data in statistics. Kybernetika 43 (2007), 491-502. | MR | Zbl
[27] Nguyen, H., Wang, T., Wu, B.: On probabilistic methods in fuzzy theory. Internat. J. Intelligent Systems 19 (2004), 99-109. | DOI | Zbl
[28] Parchami, A., Taheri, S. M., Mashinchi, M.: Fuzzy p-value in testing fuzzy hypotheses with crisp data. Statist. Papers 51 (2010), 209-226. | DOI | MR | Zbl
[29] Parthasarathy, K. R.: Probability Measurs on Metric Space. Academic Press, New York 1967. | MR
[30] Puri, M. L., Ralescu, D. A.: Fuzzy random variables. J. Math. Anal. Appl. 361 (1986), 409-422. | DOI | MR | Zbl
[31] Shapiro, A. F.: Fuzzy random variables. Insurance: Math. and Econom. 44 (2009), 307-314. | MR | Zbl
[32] Taheri, S. M., Hesamian, G.: Goodman-Kruskal measure of association for fuzzy-categorized variables. Kybernetika 47 (2011), 110-122. | MR | Zbl
[33] Taheri, S. M., Hesamian, G.: A generalization of the Wilcoxon signed-rank test and its applications. Statist. Papers 54 (2013), 457-470. | DOI | MR
[34] Viertl, R.: Univariate statistical analysis with fuzzy data. Comput. Statist. Data Anal. 51 (2006), 133-147. | DOI | MR | Zbl
[35] Viertl, R.: Statistical Methods for Fuzzy Data. J. Wiley, Chichester 2011. | MR | Zbl
[36] Wang, X., Kerre, E.: Reasonable properties for the ordering of fuzzy quantities (II). Fuzzy Sets and Systems 118 (2001), 387-405. | MR | Zbl
[37] Wu, H. C.: Statistical hypotheses testing for fuzzy data. Fuzzy Sets and Systems 175 (2005), 30-56. | MR | Zbl
[38] Yoan, Y.: Criteria for evaluating fuzzy ranking methods. Fuzzy Sets and Systems 43 (1991), 139-157. | DOI | MR