Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system
Kybernetika, Tome 49 (2013) no. 6, pp. 935-947 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.
In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.
Classification : 34A34, 34C05, 34C23, 34C28, 34H10, 34H20
Keywords: four-wing chaotic attractors; Lyapunov coefficient; degenerate Hopf bifurcations; period-doubling cascade
@article{KYB_2013_49_6_a6,
     author = {Liang, Hongtao and Tang, Yanxia and Li, Li and Wei, Zhouchao and Wang, Zhen},
     title = {Degenerate {Hopf} bifurcations and the formation mechanism of chaos in the {Qi} {3-D} four-wing chaotic system},
     journal = {Kybernetika},
     pages = {935--947},
     year = {2013},
     volume = {49},
     number = {6},
     mrnumber = {3182649},
     zbl = {1290.34050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a6/}
}
TY  - JOUR
AU  - Liang, Hongtao
AU  - Tang, Yanxia
AU  - Li, Li
AU  - Wei, Zhouchao
AU  - Wang, Zhen
TI  - Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system
JO  - Kybernetika
PY  - 2013
SP  - 935
EP  - 947
VL  - 49
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a6/
LA  - en
ID  - KYB_2013_49_6_a6
ER  - 
%0 Journal Article
%A Liang, Hongtao
%A Tang, Yanxia
%A Li, Li
%A Wei, Zhouchao
%A Wang, Zhen
%T Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system
%J Kybernetika
%D 2013
%P 935-947
%V 49
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a6/
%G en
%F KYB_2013_49_6_a6
Liang, Hongtao; Tang, Yanxia; Li, Li; Wei, Zhouchao; Wang, Zhen. Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system. Kybernetika, Tome 49 (2013) no. 6, pp. 935-947. http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a6/

[1] Chen, G. R., Ueta, T.: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999), 1465-1466. | DOI | MR | Zbl

[2] Kuznetsov, Y. A.: Elements of Applied Bifurcation Theory, Second edition. Springer-Verlag, New York 1998. | MR

[3] Lorenz, E. N.: Deterministic non-periodic flow. J. Atmospheric Sci. 20 (1963), 130-141. | DOI

[4] Lü, J. H., Chen, G. R.: A new chaotic attractor conined. Internat. J. Bifur. Chaos 12 (2002), 659-661. | DOI | MR

[5] Lü, J. H., Chen, G. R., Cheng, D. Z.: A new chaotic system and beyond: The generalized Lorenz-like system. Internat. J. Bifur. Chaos 14 (2004), 1507-1537. | DOI | MR | Zbl

[6] Lü, J. H., Han, F. L., Yu, X. H., Chen, G. R.: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica 40 (2004), 1677-1687. | DOI | MR | Zbl

[7] Lü, J. H., Yu, S. M., Leung, H., Chen, G. R.: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Systems I: Regular Papers 53 (2006), 149-165. | DOI

[8] Lü, J. H., Zhou, T. S., Chen, G. R, Zhan, S. C.: Local bifurcations of the Chen system. Internat. J. Bifur. Chaos 12 (2002), 2257-2270. | DOI | MR

[9] Mello, L. F., Coelho, S. F.: Degenerate Hopf bifurcations in the L$\ddot{u}$ system. Phys. Lett. A 373 (2009), 1116-1120. | DOI | MR

[10] Messias, M., Braga, D. C., Mello, L. F.: Degenerate Hopf bifurcaton in Chua's system. Internat. J. Bifur. Chaos 19 (2009), 497-515. | DOI | MR

[11] Qi, G. Y., Chen, G. R., Wyk, M. A., Wyk, B. J., Zhang, Y.: A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos Soliton Fract. 38 (2008), 705-721. | MR | Zbl

[12] Rössler, O. E.: An equation for continuious chaos. Phys. Lett. A 57 (1976), 397-398. | DOI

[13] Shaw, R.: Strange attractor, chaotic behaviour and information flow. Z.Naturfosch. A 36 (1981), 80-112. | MR

[14] Sotomayor, S., Mello, L. F., Braga, D. C.: Bifurcation analysis of the Watt governor system. Comm. Appl. Math. 26(2007), 19-44. | MR | Zbl

[15] Sotomayor, S., Mello, L. F., Braga, D. C.: Lyapunov coefficients for degenerate Hopf bifurcations. arXiv:0709.3949v1 [math.DS], http://arxiv.org/

[16] Sprott, J. C.: Some simple chaotic flows. Phys. Rev. E 50 (1994), 647-650. | DOI | MR

[17] Sprott, J. C.: A new class of chaotic circuit. Phys. Lett. A 266 (2000), 19-23. | DOI

[18] Sprott, J. C.: Simplest dissipative chaotic flow. Phys. Lett. A 228 (1997), 271-274. | DOI | MR | Zbl

[19] Sun, Y., Qi, G. Y., Wang, Z., Wyk, B. J.: Bifurcation analysis of the Qi 3-D four-wing chaotic system. Acta Phys. Pol. B 41 (2010), 767-778.

[20] Schrier, G. van der, Maas, L. R. M.: The diffusionless Lorenz equations; Silnikov bifurcations and reduction to an explicit map. Physica D 141 (2000), 19-36. | MR

[21] Wang, X., Chen, G. R.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1264-1272. | DOI | MR

[22] Wei, Z. C., Yang, Q. G.: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Anal. RWA 12 (2011), 106-118. | MR | Zbl

[23] Wei, Z. C., Yang, Q. G.: Dynamical analysis of the generalized Sprott C system with only two stable equilibria. Nonlinear Dyn. 68 (2012), 543-554. | MR | Zbl

[24] Wei, Z. C., Yang, Q. G.: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Anal. RWA. 12 (2011), 106-118. | MR | Zbl

[25] Wei, Z. C., Yang, Q. G.: Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Appl. Math. Comput. 217 (2010), 422-429. | DOI | MR | Zbl

[26] Yang, Q. G., Chen, G. R., Huang, K. F.: Chaotic attractors of the conjugate Lorenz-type system. Internat. J. Bifur. Chaos 17 (2007), 3929-3949. | DOI | MR | Zbl

[27] Yang, Q. G., Chen, G. R.: A chaotic system with one saddle and two stable node-foci. Internat. J. Bifur. Chaos 18 (2008), 1393-1414. | DOI | MR | Zbl

[28] Yang, Q. G., Wei, Z. C., Chen, G. R.: A unusual 3D autonomons quadratic chaotic system with two stable node-foci. Internat. J. Bifur. Chaos 20 (2010), 1061-1083. | DOI | MR

[29] Yu, S. M., Lü, J. H., Yu, X. H.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Systems I: Regular Papers 59 (2012), 1015-1028. | DOI | MR