Keywords: four-wing chaotic attractors; Lyapunov coefficient; degenerate Hopf bifurcations; period-doubling cascade
@article{KYB_2013_49_6_a6,
author = {Liang, Hongtao and Tang, Yanxia and Li, Li and Wei, Zhouchao and Wang, Zhen},
title = {Degenerate {Hopf} bifurcations and the formation mechanism of chaos in the {Qi} {3-D} four-wing chaotic system},
journal = {Kybernetika},
pages = {935--947},
year = {2013},
volume = {49},
number = {6},
mrnumber = {3182649},
zbl = {1290.34050},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a6/}
}
TY - JOUR AU - Liang, Hongtao AU - Tang, Yanxia AU - Li, Li AU - Wei, Zhouchao AU - Wang, Zhen TI - Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system JO - Kybernetika PY - 2013 SP - 935 EP - 947 VL - 49 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a6/ LA - en ID - KYB_2013_49_6_a6 ER -
%0 Journal Article %A Liang, Hongtao %A Tang, Yanxia %A Li, Li %A Wei, Zhouchao %A Wang, Zhen %T Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system %J Kybernetika %D 2013 %P 935-947 %V 49 %N 6 %U http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a6/ %G en %F KYB_2013_49_6_a6
Liang, Hongtao; Tang, Yanxia; Li, Li; Wei, Zhouchao; Wang, Zhen. Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system. Kybernetika, Tome 49 (2013) no. 6, pp. 935-947. http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a6/
[1] Chen, G. R., Ueta, T.: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999), 1465-1466. | DOI | MR | Zbl
[2] Kuznetsov, Y. A.: Elements of Applied Bifurcation Theory, Second edition. Springer-Verlag, New York 1998. | MR
[3] Lorenz, E. N.: Deterministic non-periodic flow. J. Atmospheric Sci. 20 (1963), 130-141. | DOI
[4] Lü, J. H., Chen, G. R.: A new chaotic attractor conined. Internat. J. Bifur. Chaos 12 (2002), 659-661. | DOI | MR
[5] Lü, J. H., Chen, G. R., Cheng, D. Z.: A new chaotic system and beyond: The generalized Lorenz-like system. Internat. J. Bifur. Chaos 14 (2004), 1507-1537. | DOI | MR | Zbl
[6] Lü, J. H., Han, F. L., Yu, X. H., Chen, G. R.: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica 40 (2004), 1677-1687. | DOI | MR | Zbl
[7] Lü, J. H., Yu, S. M., Leung, H., Chen, G. R.: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Systems I: Regular Papers 53 (2006), 149-165. | DOI
[8] Lü, J. H., Zhou, T. S., Chen, G. R, Zhan, S. C.: Local bifurcations of the Chen system. Internat. J. Bifur. Chaos 12 (2002), 2257-2270. | DOI | MR
[9] Mello, L. F., Coelho, S. F.: Degenerate Hopf bifurcations in the L$\ddot{u}$ system. Phys. Lett. A 373 (2009), 1116-1120. | DOI | MR
[10] Messias, M., Braga, D. C., Mello, L. F.: Degenerate Hopf bifurcaton in Chua's system. Internat. J. Bifur. Chaos 19 (2009), 497-515. | DOI | MR
[11] Qi, G. Y., Chen, G. R., Wyk, M. A., Wyk, B. J., Zhang, Y.: A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos Soliton Fract. 38 (2008), 705-721. | MR | Zbl
[12] Rössler, O. E.: An equation for continuious chaos. Phys. Lett. A 57 (1976), 397-398. | DOI
[13] Shaw, R.: Strange attractor, chaotic behaviour and information flow. Z.Naturfosch. A 36 (1981), 80-112. | MR
[14] Sotomayor, S., Mello, L. F., Braga, D. C.: Bifurcation analysis of the Watt governor system. Comm. Appl. Math. 26(2007), 19-44. | MR | Zbl
[15] Sotomayor, S., Mello, L. F., Braga, D. C.: Lyapunov coefficients for degenerate Hopf bifurcations. arXiv:0709.3949v1 [math.DS], http://arxiv.org/
[16] Sprott, J. C.: Some simple chaotic flows. Phys. Rev. E 50 (1994), 647-650. | DOI | MR
[17] Sprott, J. C.: A new class of chaotic circuit. Phys. Lett. A 266 (2000), 19-23. | DOI
[18] Sprott, J. C.: Simplest dissipative chaotic flow. Phys. Lett. A 228 (1997), 271-274. | DOI | MR | Zbl
[19] Sun, Y., Qi, G. Y., Wang, Z., Wyk, B. J.: Bifurcation analysis of the Qi 3-D four-wing chaotic system. Acta Phys. Pol. B 41 (2010), 767-778.
[20] Schrier, G. van der, Maas, L. R. M.: The diffusionless Lorenz equations; Silnikov bifurcations and reduction to an explicit map. Physica D 141 (2000), 19-36. | MR
[21] Wang, X., Chen, G. R.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1264-1272. | DOI | MR
[22] Wei, Z. C., Yang, Q. G.: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Anal. RWA 12 (2011), 106-118. | MR | Zbl
[23] Wei, Z. C., Yang, Q. G.: Dynamical analysis of the generalized Sprott C system with only two stable equilibria. Nonlinear Dyn. 68 (2012), 543-554. | MR | Zbl
[24] Wei, Z. C., Yang, Q. G.: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Anal. RWA. 12 (2011), 106-118. | MR | Zbl
[25] Wei, Z. C., Yang, Q. G.: Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Appl. Math. Comput. 217 (2010), 422-429. | DOI | MR | Zbl
[26] Yang, Q. G., Chen, G. R., Huang, K. F.: Chaotic attractors of the conjugate Lorenz-type system. Internat. J. Bifur. Chaos 17 (2007), 3929-3949. | DOI | MR | Zbl
[27] Yang, Q. G., Chen, G. R.: A chaotic system with one saddle and two stable node-foci. Internat. J. Bifur. Chaos 18 (2008), 1393-1414. | DOI | MR | Zbl
[28] Yang, Q. G., Wei, Z. C., Chen, G. R.: A unusual 3D autonomons quadratic chaotic system with two stable node-foci. Internat. J. Bifur. Chaos 20 (2010), 1061-1083. | DOI | MR
[29] Yu, S. M., Lü, J. H., Yu, X. H.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Systems I: Regular Papers 59 (2012), 1015-1028. | DOI | MR