Keywords: sample-time data; attractive ellipsoid; state estimation; saturated control process; flexible arm system
@article{KYB_2013_49_6_a5,
author = {Ordaz, Patricio and Alazki, Hussain and Poznyak, Alexander},
title = {A sample-time adjusted feedback for robust bounded output stabilization},
journal = {Kybernetika},
pages = {911--934},
year = {2013},
volume = {49},
number = {6},
mrnumber = {3182648},
zbl = {1284.93242},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a5/}
}
TY - JOUR AU - Ordaz, Patricio AU - Alazki, Hussain AU - Poznyak, Alexander TI - A sample-time adjusted feedback for robust bounded output stabilization JO - Kybernetika PY - 2013 SP - 911 EP - 934 VL - 49 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a5/ LA - en ID - KYB_2013_49_6_a5 ER -
Ordaz, Patricio; Alazki, Hussain; Poznyak, Alexander. A sample-time adjusted feedback for robust bounded output stabilization. Kybernetika, Tome 49 (2013) no. 6, pp. 911-934. http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a5/
[1] Ahmed-Ali, T., Lamnabhi-Lagarrigue, F.: High gain observer design for some networked control systems. IEEE Trans. Automat. Control 57 (2012), 4, 995-1000. | DOI | MR
[2] Blanchini, F.: Set invariance in control, a survey. Automatica 35 (1999), 11, 1747-1767. | DOI | MR
[3] Blanchini, F., Miani, F.: Set-Theoretic Methods in Control. Birkhauser, Boston 2008. | MR | Zbl
[4] Bortoff, S. A., Lynch, A. F.: Synthesis of Optimal Nonlinear Observersr. 34th IEEE Conference on Decision and Control 1 (1995), 95-100.
[5] Dahleh, M. A., Pearson, J. B.: Optimal rejection of persistent disturbances, robust stability, and mixed sensitivity minimization. IEEE Trans. on Automat. Control 33 (1988), 8, 722-731. | DOI | MR | Zbl
[6] Davila, J., Poznyak, A.: Sliding mode parameter adjustment for perturbed linear systems with actuators via invariant ellipsoid method. Internat. J. Robust and Nonlinear Control 21 (2011), 473-487. | DOI | MR | Zbl
[7] Duncan, G. J., Schweppe, F. C.: Control of linear dynamic systems with set constrained disturbances. IEEE Trans. Automat. Control 16 (1971), 5, 411-423. | DOI | MR
[8] Gonzalez, S., Polyakov, A., Poznyak, A.: Using the method of invariant ellipsoids for linear robust output stabilization of spacecraft. Automat. Remote Control 72 (2011), 3, 540-555. | DOI | MR | Zbl
[9] Ioannou, P., Sun, J.: Robust Adaptive Control. Prentice Hall, Inc, 1996. | Zbl
[10] Jong, M. L., Jay, H. L.: Approximate dynamic programming-based approaches for input-output data-driven control of nonlinear processes. Automatica 41 (2005), 1281-1288. | DOI | MR | Zbl
[11] Kabamba, P. T., Hara, S.: Worst-case analysis and design of sampled-data control systems. IEEE Trans. Automat. Control 38 (1993), 9, 1337-1358. | DOI | MR | Zbl
[12] Kurzhanski, A. B., Veliov, V. M.: Modeling Techniques and Uncertain Systems. Birkhauser, New York 1994. | MR
[13] Kou, S. R., Elliott, D. L., Tarn, T. J.: Exponential observers for non-linear dynamic systems. Inform. Control 29 (1975), 393-428. | MR
[14] Min, W., Zhou, Z. Lan, Jinhua, S.: Design of observer-based $H_{\infty }$ robust repetitive-control system. IEEE Trans. Automat. Control 56 (2011), 6, 1452-1457. | DOI | MR
[15] Narendra, K. S., Annaswamy, A. M.: Stable Adaptive Systems. Dover Publications Inc., 2005. | Zbl
[16] Nazin, A., Polyak, B., Topunov, M.: Rejection of bounded exogenous disturbances by the method of invariant ellipsoids. Automat. Remote Control 68 (2007), 3, 467-486. | DOI | MR | Zbl
[17] O'Reilly, J.: Observers for Linear Systems. Academic Press, 1983. | Zbl
[18] Ordaz, P., Poznyak, A.: Stabilizaton of furuta's pendulum with out model: Attractive ellipsoid method. In: 51th IEEE Conference of Decision and Control, Hawaii 2012, pp. 7285-7290.
[19] Poliakov, A., Poznyak, A.: Invariant ellipsoid method for minimization of unmatched disturbances effects in sliding mode control. Automatica 47 (2011), 1450-1454. | DOI | MR
[20] Poznyak, A.: Advanced Mathematical Tools for Automatic Control Engineers: Deterministic techniques. Vol. 1. Elsevier 2008. | MR
[21] Poznyak, A., Azhmyakov, V., Mera, M.: Practical output feedback stabilization for a class of continuous-time dynamic systems under sample-data outputs. Internat. J. Control 8 (2011), 4, 1408-1416. | DOI | MR
[22] Proychev, T. P., Mishkov, R. L.: Transformation of nonlinear systems in observer canonical from with reduced dependency on derivatives of the input. Automatica 29 (1993), 2, 495-498. | DOI | MR
[23] Rudin, W.: Functional Analysis. Second edition. MacGraw-Hill, Inc. 1991. | MR
[24] Sussmann, H. J., Sontag, E. D., Yang, Y.: A general result on the stabilization of linear systems using bounded controls. IEEE Trans. Automat. Control 39 (1994), 12, 2411-2425. | DOI | MR | Zbl
[25] Tingshu, H., Zongli, L.: Control Systems with Actuator Saturation: Analyze and Design. Birkhauser, Boston 2001.
[26] Teel, A. R.: A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Trans. Automat. Control 41 (1996), 9, 1256-1270. | DOI | MR | Zbl
[27] Utkin, V.: Sliding mode control design principles and applications to electric drives. IEEE Trans. on Industrial Electronics 40 (1993), 1, 23-36. | DOI
[28] Walcott, B., Corless, M., Zak, S.: Comparative study of non-linear state-observation techniques. Internat. J. Control 45 (1987), 6, 2109-2132. | DOI | MR | Zbl
[29] Zeitz, M.: The extended Luenberger observer for nonlinear systems. Systems Control Lett. 9 (1987), 149-156. | DOI | MR | Zbl