Keywords: interior-point methods; symmetric cone optimization; Euclidean Jordan algebra; polynomial complexity
@article{KYB_2013_49_6_a3,
author = {Kheirfam, Behrouz and Mahdavi-Amiri, Nezam},
title = {New complexity analysis of a full {Nesterov-} {Todd} step infeasible interior-point algorithm for symmetric optimization},
journal = {Kybernetika},
pages = {883--896},
year = {2013},
volume = {49},
number = {6},
mrnumber = {3182646},
zbl = {06285133},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a3/}
}
TY - JOUR AU - Kheirfam, Behrouz AU - Mahdavi-Amiri, Nezam TI - New complexity analysis of a full Nesterov- Todd step infeasible interior-point algorithm for symmetric optimization JO - Kybernetika PY - 2013 SP - 883 EP - 896 VL - 49 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a3/ LA - en ID - KYB_2013_49_6_a3 ER -
%0 Journal Article %A Kheirfam, Behrouz %A Mahdavi-Amiri, Nezam %T New complexity analysis of a full Nesterov- Todd step infeasible interior-point algorithm for symmetric optimization %J Kybernetika %D 2013 %P 883-896 %V 49 %N 6 %U http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a3/ %G en %F KYB_2013_49_6_a3
Kheirfam, Behrouz; Mahdavi-Amiri, Nezam. New complexity analysis of a full Nesterov- Todd step infeasible interior-point algorithm for symmetric optimization. Kybernetika, Tome 49 (2013) no. 6, pp. 883-896. http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a3/
[1] Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York 1994. | MR | Zbl
[2] Faybusovich, L.: Linear systems in Jordan algebras and primal-dual interior-point algorithms. J. Comput. Appl. Math. 86 (1997), 149-175. | DOI | MR | Zbl
[3] Faybusovich, L.: A Jordan-algebraic approach to potential-reduction algorithms. Math. Z. 239 (2002), 1, 117-129. | DOI | MR | Zbl
[4] Gu, G., Zangiabadi, M., Roos, C.: Full Nesterov-Todd step infeasible interior-point method for symmetric optimization. European J. Oper. Res. 214 (2011), 3, 473-484. | DOI | MR | Zbl
[5] Güler, O.: Barrier functions in interior-point methods. Math. Oper. Res. 21 (1996), 4, 860-885. | DOI | MR | Zbl
[6] Muramatsu, M.: On a commutative class of search directions for linear programming over symmetric cones. J. Optim. Theory Appl. 112 (2002), 3, 595-625. | DOI | MR | Zbl
[7] Nesterov, Y. E., Nemirovski, A.: Interior-point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia 1994. | MR
[8] Nesterov, Y. E., Todd, M. J.: Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res. 22 (1997), 1, 1-42. | DOI | MR | Zbl
[9] Rangarajan, B. K.: Polynomial convergence of infeasible-interior-point methods over symmetric cones. SIAM J. Optim. 16 (2006), 4, 1211-1229. | DOI | MR | Zbl
[10] Roos, C.: A full-Newton step $O(n)$ infeasible interior-point algorithm for linear optimization. SIAM J. Optim. 16 (2006), 4, 1110-1136. | DOI | MR | Zbl
[11] Roos, C., Terlaky, T., Vial, J.-Ph.: Theory and Algorithms for Linear Optimization: An Interior-Point Approach. John Wiley and Sons, Chichester 1997, Second edition Springer 2006. | MR | Zbl
[12] Schmieta, S. H., Alizadeh, F.: Extension of primal-dual interior-point algorithm to symmetric cones. Math. Program. 96 (2003), 3, 409-438. | DOI | MR
[13] Sturm, J. F.: Similarity and other spectral relations for symmetric cones. Algebra Appl. 312 (2000), 1 - 3, 135-154. | DOI | MR | Zbl
[14] Vieira, M. V. C.: Jordan Algebraic Approach to Symmetric Optimization. Ph.D. Thesis, Electrical Engineering, Mathematics and Computer Science, Delft University of Technology 2007.