Universally typical sets for ergodic sources of multidimensional data
Kybernetika, Tome 49 (2013) no. 6, pp. 868-882
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We lift important results about universally typical sets, typically sampled sets, and empirical entropy estimation in the theory of samplings of discrete ergodic information sources from the usual one-dimensional discrete-time setting to a multidimensional lattice setting. We use techniques of packings and coverings with multidimensional windows to construct sequences of multidimensional array sets which in the limit build the generated samples of any ergodic source of entropy rate below an $h_{0}$ with probability one and whose cardinality grows at most at exponential rate $h_{0}$.
We lift important results about universally typical sets, typically sampled sets, and empirical entropy estimation in the theory of samplings of discrete ergodic information sources from the usual one-dimensional discrete-time setting to a multidimensional lattice setting. We use techniques of packings and coverings with multidimensional windows to construct sequences of multidimensional array sets which in the limit build the generated samples of any ergodic source of entropy rate below an $h_{0}$ with probability one and whose cardinality grows at most at exponential rate $h_{0}$.
Classification :
60F15, 62D05, 94A08, 94A17, 94A24
Keywords: universal codes; typical sampling sets; entropy estimation; asymptotic equipartition property; ergodic theory
Keywords: universal codes; typical sampling sets; entropy estimation; asymptotic equipartition property; ergodic theory
@article{KYB_2013_49_6_a2,
author = {Kr\"uger, Tyll and Mont\'ufar, Guido and Seiler, Ruedi and Siegmund-Schultze, Rainer},
title = {Universally typical sets for ergodic sources of multidimensional data},
journal = {Kybernetika},
pages = {868--882},
year = {2013},
volume = {49},
number = {6},
mrnumber = {3182645},
zbl = {1293.94037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a2/}
}
TY - JOUR AU - Krüger, Tyll AU - Montúfar, Guido AU - Seiler, Ruedi AU - Siegmund-Schultze, Rainer TI - Universally typical sets for ergodic sources of multidimensional data JO - Kybernetika PY - 2013 SP - 868 EP - 882 VL - 49 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a2/ LA - en ID - KYB_2013_49_6_a2 ER -
Krüger, Tyll; Montúfar, Guido; Seiler, Ruedi; Siegmund-Schultze, Rainer. Universally typical sets for ergodic sources of multidimensional data. Kybernetika, Tome 49 (2013) no. 6, pp. 868-882. http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a2/