Keywords: universal codes; typical sampling sets; entropy estimation; asymptotic equipartition property; ergodic theory
@article{KYB_2013_49_6_a2,
author = {Kr\"uger, Tyll and Mont\'ufar, Guido and Seiler, Ruedi and Siegmund-Schultze, Rainer},
title = {Universally typical sets for ergodic sources of multidimensional data},
journal = {Kybernetika},
pages = {868--882},
year = {2013},
volume = {49},
number = {6},
mrnumber = {3182645},
zbl = {1293.94037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a2/}
}
TY - JOUR AU - Krüger, Tyll AU - Montúfar, Guido AU - Seiler, Ruedi AU - Siegmund-Schultze, Rainer TI - Universally typical sets for ergodic sources of multidimensional data JO - Kybernetika PY - 2013 SP - 868 EP - 882 VL - 49 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a2/ LA - en ID - KYB_2013_49_6_a2 ER -
Krüger, Tyll; Montúfar, Guido; Seiler, Ruedi; Siegmund-Schultze, Rainer. Universally typical sets for ergodic sources of multidimensional data. Kybernetika, Tome 49 (2013) no. 6, pp. 868-882. http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a2/
[1] Bjelaković, I., Krüger, T., Siegmund-Schultze, R., Szkoła, A.: The Shannon-McMillan theorem for ergodic quantum lattice systems. Invent. Math. 155 (2004) (1), 203-222. | DOI | MR | Zbl
[2] Breiman, L.: The individual ergodic theorem of information theory. Ann. Math. Statist. 28 (1957), 809-811. | DOI | MR | Zbl
[3] Kieffer, J. C.: A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probab. 3 (1975), 6, 1031-1037. | DOI | MR
[4] Lempel, A., Ziv, J.: Compression of two-dimensional data. IEEE Trans. Inform. Theory 32 (1986), 1, 2-8. | DOI
[5] Lindenstrauss, E.: Pointwise theorems for amenable groups. Invent. Math. 146 (2001), 2, 259-295. | DOI | MR | Zbl
[6] McMillan, B.: The basic theorems of information theory. Ann. Math. Statist. 24 (1953), 2, 196-219. | DOI | MR | Zbl
[7] Ornstein, D. S., Weiss, B.: The Shannon-McMillan-Breiman theorem for a class of amenable groups. Israel J. Math. 44 (1983), 1, 53-60. | DOI | MR | Zbl
[8] Ornstein, D. S., Weiss, B.: How sampling reveals a process. Ann. Probab. 18 (1990), 3, 905-930. | DOI | MR | Zbl
[9] Shannon, C. E.: A mathematical theory of communication. Bell Syst. Techn. J. 27 (1948), 1, 379-423, 623-656. | DOI | MR | Zbl
[10] Schmidt, K.: A probabilistic proof of ergodic decomposition. Sankhya: Indian J. Statist, Ser. A 40 (1978), 1, 10-18. | MR | Zbl
[11] Shields, P.: The Ergodic Theory of Discrete Sample Paths. Amer. Math. Soc., Graduate Stud. Math. 13 (1996). | DOI | MR | Zbl
[12] Welch, T. A.: A technique for high-performance data compression. Computer 17 (1984), 6, 8-19. | DOI
[13] Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inform. Theory 23 (1977), 3, 337-343. | DOI | MR | Zbl
[14] Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inform. Theory 24 (1978), 5, 530-536. | DOI | MR | Zbl