On the queue-size distribution in the multi-server system with bounded capacity and packet dropping
Kybernetika, Tome 49 (2013) no. 6, pp. 855-867 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A multi-server $M/M/n$-type queueing system with a bounded total volume and finite queue size is considered. An AQM algorithm with the “accepting” function is being used to control the arrival process of incoming packets. The stationary queue-size distribution and the loss probability are derived. Numerical examples illustrating theoretical results are attached as well.
A multi-server $M/M/n$-type queueing system with a bounded total volume and finite queue size is considered. An AQM algorithm with the “accepting” function is being used to control the arrival process of incoming packets. The stationary queue-size distribution and the loss probability are derived. Numerical examples illustrating theoretical results are attached as well.
Classification : 60K25, 90B22
Keywords: AQM algorithms; loss probability; multi-server queueing system; queue-size distribution
@article{KYB_2013_49_6_a1,
     author = {Tikhonenko, Oleg and Kempa, Wojciech M.},
     title = {On the queue-size distribution in the multi-server system with bounded capacity and packet dropping},
     journal = {Kybernetika},
     pages = {855--867},
     year = {2013},
     volume = {49},
     number = {6},
     mrnumber = {3182644},
     zbl = {1302.90052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a1/}
}
TY  - JOUR
AU  - Tikhonenko, Oleg
AU  - Kempa, Wojciech M.
TI  - On the queue-size distribution in the multi-server system with bounded capacity and packet dropping
JO  - Kybernetika
PY  - 2013
SP  - 855
EP  - 867
VL  - 49
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a1/
LA  - en
ID  - KYB_2013_49_6_a1
ER  - 
%0 Journal Article
%A Tikhonenko, Oleg
%A Kempa, Wojciech M.
%T On the queue-size distribution in the multi-server system with bounded capacity and packet dropping
%J Kybernetika
%D 2013
%P 855-867
%V 49
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a1/
%G en
%F KYB_2013_49_6_a1
Tikhonenko, Oleg; Kempa, Wojciech M. On the queue-size distribution in the multi-server system with bounded capacity and packet dropping. Kybernetika, Tome 49 (2013) no. 6, pp. 855-867. http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a1/

[1] Athuraliya, S., Low, S. H., Li, V. H., Qinghe, Y.: REM: active queue management. IEEE Network 15 (2001), 3, 48-53. | DOI

[2] Aweya, J., Ouellette, M., Montuno, D. Y., Chapman, A.: A control theoretic approach to Active Queue Management.

[3] Bocharov, P. P., D'Apice, C., Pechinkin, A. V., Salerno, S.: Queueing Theory. VSP, Utrecht-Boston, 2004. | MR | Zbl

[4] Bonald, T., May, M., Bolot, J. Ch.: Analytic evaluation of RED performance. In: Proc. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies 3 (2000), pp. 1415-1424.

[5] Chrost, L., Brachman, A., Chydzinski, A.: On the performance of AQM algoritms with small buffers. Comput. Network CCIS 39 (2009), 168-173. | DOI

[6] Chydzinski, A.: Towards a stable AQM via dropping function shaping. In: Proc. Ninth International Conference on Networks (ICN) (2010), pp. 93-97.

[7] Chydzinski, A., Chrost, L.: Analysis of AQM queues with queue size based packet dropping. Int. J. Appl. Math. Comput. Sci. 21 (2011), 3, 567-577. | DOI | MR | Zbl

[8] Chydzinski, A.: Optimization problems in the theory of queues with dropping functions. HET-NETs (2011), 121-132.

[9] Feller, W.: Introduction to Probability Theory and Its Applications. Wiley, 1971. | MR | Zbl

[10] Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE ACM T. Network 1 (1993), 4, 397-412. | DOI

[11] Floyd, S.: Recommendations on using the gentle variant of RED. http://www.aciri.org/floyd/red/gentle.html, March 2000.

[12] Floyd, S.: Adaptive RED: an algorithm for increasing the robustness of RED's Active Queue Management. http://www.aciri.org/floyd/papers/adaptiveRed.pdf

[13] Hao, W., Wei, Y.: An extended $GI^{X}/M/1/N$ queueing model for evaluating the performance of AQM algorithms with aggregate traffic. Lect. Notes Comput. Sci. 3619 (2005), 395-404. | DOI

[14] Kempa, W. M.: On main characteristics of the $M/M/1/N$ queue with single and batch arrivals and the queue size controlled by AQM algorithms. Kybernetika 47 (2011), 6, 930-943. | MR | Zbl

[15] Kempa, W. M.: A direct approach to transient queue-size distribution in a finite-buffer queue with AQM. Appl. Math. Inform. Sci. 7 (2013), 3, 909-915. | DOI | MR

[16] Liu, S., Basar, T., Srikant, R.: Exponential RED: A stabilizing AQM scheme for low- and high-speed TCP protocols. IEEE/ACM Trans. Newtorking 13 (2005), 5, 1068-1081. | DOI

[17] Rosolen, V., Bonaventure, O., Leduc, G.: A RED discard strategy for ATM networks and its performance evaluation with TCP/IP traffic. Comput. Commun. Rew. 29 (1999), 3, 23-43. | DOI

[18] Sun, L., Wang, L.: A novel RED scheme with preferential dynamic threshold deployment. In: Computational Intelligence and Security Workshops 2007, pp. 854-857.

[19] Suresh, S., Gol, O.: Congestion management of self similar IP traffic - application of the RED scheme. In: Wireless and Optical Communications Networks, Second IFIP International Conference 2005, pp. 372-376.

[20] Tikhonenko, O.: Queueing systems of a random length demands with restrictions. Automat. Remote Control 52 (1991), 10, 1431-1437. | MR

[21] Tikhonenko, O.: Generalized Erlang problem for service systems with finite total capacity. Probl. Inform. Transmission 41 (2005), 3, 243-253. | DOI | MR | Zbl

[22] Tikhonenko, O., Kempa, W. M.: The generalization of AQM algorithms for queueing systems with bounded capacity. Lect. Notes Comput. Sci. 7204 (2012), 242-251. | DOI

[23] Xiong, N., Yang, Y., Defago, X., He, Y.: LRC-RED: A self-tuning robust and adaptive AQM scheme. In: Sixth International Conference on Parallel and Distributed Computing Applications and Technologies 2005, pp. 655-659.

[24] Zhou, K., Yeung, K. L., Li, V. O. K.: Nonlinear RED: A simple yet efficient active queue management scheme. Comput. Networks 50 (2006), 18, 3784-3794. | DOI | Zbl